Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T22:41:31.213Z Has data issue: false hasContentIssue false

Saving the stem group—a contradiction in terms?

Published online by Cambridge University Press:  08 April 2016

Philip C. J. Donoghue*
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom. 〈E-mail: [email protected]

Extract

The classification of fossils has long been controversial. Should traditional taxonomic concepts be expanded to encompass plesiomorphic extinct relatives that exhibit subsets of essential defining characters in so many shades of gray? Should rank taxa, established on extant taxa alone, and in a pre-Darwinian, pre-Hennigian framework, remain restricted to their living constituents and integral extinct relatives? Or should these taxonomic concepts be restricted to a membership exhibiting a defining suite of essential characters, regardless of whether they are extant or extinct?

Type
Matters of the Record
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Archibald, J. D. 1999. Molecular dates and the mammalian radiation. Trends in Ecology and Evolution 14:278278.Google Scholar
Ax, P. 1984. Das Phylogenetische System. Gustav Fischer, Stuttgart.Google Scholar
Ax, P. 1985. Stem species and the stem lineage concept. Cladistics 1:279287.Google Scholar
Ax, P. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis. Wiley, Chichester, U.K. Google Scholar
Bassham, S., Martinez, M., and Postlethwait, J. H. 1999. Molecular embryology of a stem chordate, Oikopleura dioica . American Zoologist 39:300.Google Scholar
Best, A. A., Morrison, H. G., McArthur, A. G., Sogin, M. L., and Olsen, G. J. 2004. Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia . Genome Research 14:15371547.Google Scholar
Brochu, C. A., Sumrall, C. D., and Theodor, J. M. 2004. When clocks (and communities) collide: estimating divergence time from molecules and the fossil record. Journal of Paleontology 78:16.2.0.CO;2>CrossRefGoogle Scholar
Bromham, L., Penny, D., and Phillips, M. 1999. Molecular dates and the mammalian radiation: reply from Bromham, L., Penny, D. and Phillips, M. J. Trends in Ecology and Evolution 14:278.CrossRefGoogle Scholar
Bryant, H. N. 1996. Explicitness, stability, and universality in the phylogenetic definition and usage of taxon names: a case study of the phylogenetic taxonomy of the Carnivora (Mammalia). Systematic Biology 45:174189.CrossRefGoogle Scholar
Budd, G. 1993. A Cambrian gilled lobopod from Greenland. Nature 364:709711.CrossRefGoogle Scholar
Coates, M. I., and Cohn, M. J. 1998. Fins, limbs, and tails: outgrowths and axial patterning in vertebrate evolution. BioEssays 20:371381.Google Scholar
Collins, A. G., and Valentine, J. W. 2001. Defining phyla: evolutionary pathways to metazoan body plans. Evolution and Development 3:432442.Google Scholar
Craske, A. J., and Jefferies, R. P. S. 1989. A new mitrate from the Upper Ordovician of Norway, and a new approach to subdividing a plesion. Palaeontology 32:6999.Google Scholar
de Queiroz, K., and Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39:307322.Google Scholar
de Queiroz, K., and Gauthier, J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23:449480.Google Scholar
Donoghue, P. C. J., Forey, P. L., and Aldridge, R. J. 2000. Conodont affinity and chordate phylogeny. Biological Reviews 75:191251.Google Scholar
Donoghue, P. C. J., and Purnell, M. A. 2005. Genome duplication, extinction and vertebrate evolution. Trends in Ecology and Evolution 20:312319.Google Scholar
Doyle, J. A., and Donoghue, M. J. 1993. Phylogenies and angiosperm diversification. Paleobiology 19:141167.Google Scholar
Gauthier, J., and de Queiroz, K. 2001. Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name “Aves.” Pp. 741 in Gauthier, J. and Gall, L. F., eds. New perspectives on the origin and early evolution of birds. Peabody Museum of Natural History, Yale University, New Haven, Conn. Google Scholar
Hennig, W. 1981. Insect phylogeny. Wiley, New York.Google Scholar
Janvier, P. 1996. Early vertebrates. Oxford University Press, Oxford.Google Scholar
Jefferies, R. P. S. 1979. The origin of chordates: a methodological essay. In House, M. R., ed. The origin of major invertebrate groups. Systematics Association Special Volume 12:443447. Academic Press, London.Google Scholar
Jefferies, R. P. S. 1985. Das Phylogenetische System [book review]. Cladistics 1:299300.Google Scholar
Jefferies, R. P. S. 1986. The ancestry of the vertebrates. British Museum (Natural History), London.Google Scholar
Jefferies, R. P. S., Lewis, M., and Donovan, S. K. 1987. Protocystites menevensis—a stem-group chordate (Cornuta) from the Middle Cambrian of South Wales. Palaeontology 30:429484.Google Scholar
Joyce, W. G., Parham, J. F., and Gauthier, J. A. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology 78:9891013.Google Scholar
Laurin, M., and Anderson, J. S. 2004. Meaning of the name Tetrapoda in the scientific literature: an exchange. Systematic Biology 53:6880.CrossRefGoogle ScholarPubMed
Lenz, A. C., and Melchin, A. J. 1996. Phylogenetic analysis of the Silurian Retiolitidae. Lethaia 29:301309.Google Scholar
Magallón, S., and Sanderson, M. J. 2001. Absolute diversification rates in angiosperm clades. Evolution 55:17621780.Google Scholar
Monks, N. 2002. Cladistic analysis of a problematic ammonite group: the Hamitidae (Cretaceous, Albian-Turonian) and proposals for new cladistic terms. Palaeontology 45:689707.Google Scholar
Nelson, G. J. 1972. Comments on Hennig's “Phylogenetic systematics” and its influence on ichthyology. Systematic Zoology 21:364374.Google Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Systematics 12:195223.Google Scholar
Patterson, C. 1993. Naming names. Nature 366:518.Google Scholar
Patterson, C., and Rosen, D. E. 1977. Review of ichthyodectiform and other Mesozoic Teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History 158:83172.Google Scholar
Prum, R. O., and Brush, A. H. 2002. The evolutionary origin and diversification of feathers. Quarterly Review of Biology 77:261295.Google Scholar
Rieppel, O. 1998. Corosaurus alcovensis Case and the phylogenetic interrelationships of Triassic stem-group Sauropterygia. Zoological Journal of the Linnean Society 124:141.Google Scholar
Rowe, T. 1988. Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology 8:241264.Google Scholar
Rowe, T., and Gauthier, J. 1992. Ancestry, paleontology, and definition of the name Mammalia. Systematic Biology 41:372378.Google Scholar
Runnegar, B. N. 1991. Evolution of the earliest animals. Pp. 6593 in Schopf, J. W., ed. Major events in the history of life. Jones and Bartlett, Boston.Google Scholar
Ruta, M., Coates, M. I., and Quicke, D. L. J. 2003. Early tetrapod relationships revisited. Biological Reviews 78:251345.Google Scholar
Weishampel, D. B., Dodson, P., and Osmólska, H., eds. 2004. The Dinosauria. University of California Press, Berkeley.CrossRefGoogle Scholar
Wiley, E. O. 1979. An annotated Linnean hierarchy, with comments on natural taxa and competing systems. Systematic Zoology 28:308337.Google Scholar
Wills, M. A., and Fortey, R. A. 2000. The shape of life: how much is written in stone? BioEssays 22:11421152.Google Scholar