Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T13:55:16.784Z Has data issue: false hasContentIssue false

The same picture through different lenses: quantifying the effects of two preservation pathways on Green River Formation insects

Published online by Cambridge University Press:  23 January 2017

Evan P. Anderson
Affiliation:
Department of Geological Sciences, University of Colorado–Boulder, UCB 399, Boulder, Colorado 80309-0399, U.S.A. E-mail: [email protected]
Dena M. Smith
Affiliation:
University of Colorado Museum of Natural History, University of Colorado–Boulder, UCB 265, Boulder, Colorado 80309-0265, U.S.A. E-mail: [email protected]

Abstract

Insects in the fossil record are generally preserved in lacustrine shales or in amber. For those in lacustrine shales, preservation is usually via keroginization or mineralization. Given the extended period of microbial decay required to generate ions for mineralization, there is a predicted inherent bias toward lower preservation quality for this pathway by most taphonomic indices compared with keroginization. This study tests this hypothesis by comparing multiple measures of preservation quality between sites with similar sedimentology in the Eocene Green River Formation of Colorado. Here, insects are either mineralized in iron oxides (likely after pyrite) at the Paleoburn site or keroginized at the Anvil Points site.

Generally, the prediction that keroginization preserves soft-bodied fossils with higher preservational quality than mineralization is affirmed, but with some caveats. Beetles, known for their robust cuticles, are proportionately more abundant at the Paleoburn site, but eight of the nine orders recorded are shared between sites. As predicted, insects show lower preservation fidelity at the Paleoburn site, but they also show higher degrees of disarticulation. This second bias should be acquired primarily during the biostratinomy stage, and not early diagenesis. Nonetheless, higher-energy biostratinomic conditions may be compatible with taphonomic conditions that promote mineralization over keroginization.

Comparing the inherent taphonomic bias of different preservation pathways is often difficult, since fossil deposits may be preserved millions of years or thousands of kilometers apart. By studying two different preservation pathways of insects within the same formation, we can affirm that keroginization does indeed preserve recalcitrant organic matter with higher quality than pyritization or iron-oxide mineralization. Additionally, some guidelines can be proposed concerning the body parts and taxa that can be compared, and for what purpose, when contrasting mineralized and keroginized soft-bodied deposits.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, E. P., and Smith, D. M.. 2012. Insect taphonomy in the Green River Formation of Colorado: preservation as carbonaceous compressions and iron oxides. Geological Society of America Abstracts with Programs 44:397.Google Scholar
Anderson, E. P., Schiffbauer, J. D., and Xiao, S.. 2011. Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology 39:643646.CrossRefGoogle Scholar
Barling, N., Martill, D. M., Heads, S. W., and Gallien, F.. 2015. High fidelity preservation of fossil insects from the Crato Formation (Lower Cretaceous) of Brazil. Cretaceous Research 52:605622.CrossRefGoogle Scholar
Bomfleur, B., McLoughlin, S., and Vajda, V.. 2014. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science 343:13761377.CrossRefGoogle ScholarPubMed
Borror, D. J., and White, R. E.. 1970. A Field Guide to Insects: America North of Mexico. Houghton Mifflin, New York.Google Scholar
Botting, J. P., Muir, L. A., Sutton, M. D., and Barnie, T.. 2011. Welsh gold: a new exceptionally preserved pyritized Ordovician biota. Geology 39:879882.CrossRefGoogle Scholar
Bradley, W. H. 1929. The varves and climate of the Green River epoch. U.S. Geological Survey Professional Paper 158:87110.Google Scholar
Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philosophical Transactions of the Royal Society B 354:717.CrossRefGoogle Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31:275301.CrossRefGoogle Scholar
Briggs, D. E. G., and Kear, A. J.. 1994. Decay and mineralization of shrimps. Palaios 9:431456.CrossRefGoogle Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J.. 1994. The fossils of the Burgess Shale. Smithsonian Institution, Washington, D.C.Google Scholar
Briggs, D. E. G., Raiswell, R., Bottrell, S. H., Hatfield, D., and Bartels, C.. 1996a. Controls on the pyritization of exceptionally preserved fossils: an analysis of the Lower Devonian Hunsrück Slate of Germany. American Journal of Science 296:633663.CrossRefGoogle Scholar
Briggs, D. E. G., Siveter, D. J., and Siveter, D. J.. 1996b. Soft-bodied fossils from a Silurian volcaniclastic deposit. Nature 382:248250.CrossRefGoogle Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16:272286.CrossRefGoogle Scholar
Butterfield, N. J. 1995. Secular distribution of Burgess-Shale-type preservation. Lethaia 28:113.CrossRefGoogle Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology 43:166177.CrossRefGoogle ScholarPubMed
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S.. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology 326–328:109117.CrossRefGoogle Scholar
Carpenter, F. M. 1955. An Eocene Bittacus (Mecoptera). Psyche 62:3941.CrossRefGoogle Scholar
Cashion, W. B., and Donnell, J. R.. 1972. Chart showing correlation of selected key units in the organic-rich sequence of the Green River Formation, Piceance Creek Basin, Colorado, and Uinta Basin, Utah. U.S. Geological Survey Oil and Gas Investigations Chart OC-65.Google Scholar
Cockerell, T. D. A. 1909. Fossil insects from Colorado. The Entomologist 42:170174.Google Scholar
Cockerell, T. D. A. 1921. Eocene insects from the Rocky Mountains. Proceedings of the United States National Museum 57:233260.CrossRefGoogle Scholar
Cockerell, T. D. A. 1925. Fossil insects in the United States National Museum. Proceedings of the United States National Museum 64:115.CrossRefGoogle Scholar
Cockerell, T. D. A. 1926. Plant and insect fossils from the Green River Eocene of Colorado. Proceedings of the United States National Museum 66:113.CrossRefGoogle Scholar
Cole, R. D., and Picard, M. D.. 1978. Comparative mineralogy of nearshore and offshore lacustrine lithofacies, Parachute Creek Member of the Green River Formation, Piceance Creek Basin, Colorado, and eastern Uinta Basin, Utah. Geological Society of America Bulletin 89:14411454.2.0.CO;2>CrossRefGoogle Scholar
Dayvault, R. D., Codington, L. A., Kohls, D., Hawes, W. D., and Ott, P. M.. 1995. Fossil insects and spiders from three locations in the Green River Formation of the Piceance Basin, Colorado. Pp. 97116. in W. R. Averett, ed. The Green River Formation in Piceance Creek and Eastern Uinta Basins. Grand Junction Geological Society, Grand Junction, Colo.Google Scholar
Donnell, J. R. 2009. Intertonguing of the lower part of the Uinta Formation with the upper part of the Green River Formation in the Piceance Creek Basin during the late stages of Lake Uinta. U.S. Geological Survey Scientific Investigations Report 2008–5237:125.Google Scholar
Duncan, I. J. 1997. The taphonomy of insects. Ph.D. dissertation. University of Bristol, Bristol, U.K.Google Scholar
Duncan, I. J., Titchener, F., and Briggs, D. E. G.. 2003. Decay and disarticulation of the cockroach: implications for preservation of the blattoids of Writhlington (upper Carboniferous), UK. Palaios 18:256265.2.0.CO;2>CrossRefGoogle Scholar
Farrell, Ú. C., Martin, M. J., Hagadorn., J. W., Whiteley, T., and Briggs, D. E. G.. 2009. Beyond Beecher’s Trilobite Bed: widespread pyritization of soft tissues in the Late Ordovician Taconic foreland basin. Geology 37:907910.CrossRefGoogle Scholar
Farrell, Ú. C., Briggs, D. E. G., and Gaines, R. R.. 2011. Paleoecology of the olenid trilobite Triarthrus: new evidence from Beecher’s Trilobite Bed and other sites of pyritization. Palaios 26:730742.CrossRefGoogle Scholar
Fenchel, T., and Finlay, B. J.. 1995. Ecology and evolution in anoxic worlds. Oxford University Press, New York.CrossRefGoogle Scholar
Gabbott, S. E. 1998. Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals. Palaeontology 41:631667.Google Scholar
Gabbott, S. E., Xian-Guang, H., Norry, M. J., and Siveter, D. J.. 2004. Preservation of early Cambrian animals of the Chengjiang biota. Geology 32:901904.CrossRefGoogle Scholar
Gaines, R. R., Briggs, D. E. G., and Yuanlong, Z.. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36:755758.CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E.. 2012. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences USA 109:51805184.CrossRefGoogle ScholarPubMed
Grande, L. 1984. Paleontology of the Green River Formation with a Review of the Fish Fauna. Pioneer Printing and Stationary, Cheyenne, Wyo.Google Scholar
Greenwalt, D. E., Rose, T. R., Siljestrom, S. M., Goreva, Y. S., Constenius, K. N., and Wingerath, J. G.. 2015. Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation. Acta Palaeontologica Polonica 60:931947.Google Scholar
Gupta, N. S., Michels, R., Briggs, D. E. G., Evershed, R. P., and Pancost, R. D.. 2006. The organic preservation of fossil arthropods: an experimental study. Proceedings of the Royal Society B 273:27772783.CrossRefGoogle ScholarPubMed
Hofmann, H. J. 1994. Proterozoic carbonaceous compressions (“metaphytes” and “worms”). Pp. 342357 in S. Bengston, ed. Early life on earth. Columbia University Press, New York.Google Scholar
Huang, D., Engel, M. S., Cai, C., Wu, H., and Nel, A.. 2012. Diverse transitional giant fleas from the Mesozoic Era of China. Nature 483:201204.CrossRefGoogle ScholarPubMed
Johnson, R. C. 1984. New names for units in the lower part of the Green River Formation, Piceance Creek Basin, Colorado. Geological Survey Bulletin: Contributions to Stratigraphy 1529–I:120.Google Scholar
Kohls, D. 2006. Invertebrate fossils of the Eocene epoch: a sampler; Green River Formation, Piceance Creek Basin, Northwestern Colorado. Eocene Images, Grand Junction, Colo.Google Scholar
Kühl, G., Briggs, D. E. G., and Rust, J.. 2009. A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science 323:771773.CrossRefGoogle ScholarPubMed
Lin, J.-P. 2006. Taphonomy of naraoiids (Arthropoda) from the middle Cambrian Kaili Biota, Guizhou Province, South China. Palaios 21:1525.CrossRefGoogle Scholar
Martill, D. M. 1988. Preservation of fish in the Cretaceous Santana Formation of Brazil. Palaeontology 31:118.Google Scholar
Martill, D. M. 1990. Macromolecular resolution of fossilized muscle tissue from an elopomorph fish. Nature 346:171172.CrossRefGoogle Scholar
Martill, D. M. 1995. An ichthyosaur with preserved soft tissue from the Sinemurian of southern England. Palaeontology 38:897903.Google Scholar
Martínez-Delclòs, X., and Martinell, J.. 1993. Insect taphonomy experiments. Their application to the Cretaceous outcrops of lithographic limestones from Spain. Kaupia 2:133144.Google Scholar
Martínez-Delclòs, X., Briggs, D. E. G., and Peñalver, E.. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Palaeoecology 203:1964.CrossRefGoogle Scholar
McAlpine, J. F., Peterson, B. V., Shewell, G. E., Teskey, H. J., Vockeroth, J. R., and Wood, D. M.. 1981. Manual of Nearctic Diptera. Canadian Government Publishing Centre, Hull, Quebec.Google Scholar
McLoughlin, S., Bomfleur, B., Grimm, G. W., and Vajda, V.. 2014. A permineralized royal fern with preserved organelles from Early Jurassic volcanigenic deposits of Sweden. Fourth International Palaeontological Congress (Mendoza, Argentina). Programme, 33.Google Scholar
McNamara, M. E., Orr, P. J., Kearns, S. L., Alcalá, L., Anadón, P., and Mollá, E. P.. 2009. Soft-tissue preservation in Miocene frogs from Libros, Spain: insights into the genesis of decay microenvironments. Palaios 24:104117.CrossRefGoogle Scholar
McNamara, M. E., Briggs, D. E. G., and Orr, P. J.. 2012. The controls of the preservation of structural color in fossil insects. Palaios 27:443454.CrossRefGoogle Scholar
McNamara, M. E., Briggs, D. E. G., Orr, P. J., Gupta, N. S., Locatelli, E. R., Qiu, L., Yang, H., Wang, Z., Noh, H., and Cao, H.. 2013. The fossil record of insect color illuminated by maturation experiments. Geology 41:487490.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L.. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science 281:11731175.CrossRefGoogle ScholarPubMed
Osés, G. L., Petri, S., Rodrigues, F., Galante, D., Rizzutto, M. de A., Silva, A. de O. D., and Pacheco, M. L. A. F.. 2014. The Crato Formation fossil insects: window to geobiological processes. Fourth International Palaeontological Congress (Mendoza, Argentina). Programme, 50.Google Scholar
O’Sullivan, R. B. 1986. Preliminary geologic map of the Anvil Points Quadrangle, Garfield County, Colorado (1:24000). U.S. Geological Survey Miscellaneous Field Studies Map MF-1882.Google Scholar
O’Sullivan, R. B., and Hail, W. J. Jr. 1987. Preliminary geologic map of the Forked Gulch Quadrangle, Garfield County, Colorado (1:24000). U.S. Geological Survey Miscellaneous Field Studies Map MF-1953.Google Scholar
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. American Journal of Science 301:683726.CrossRefGoogle Scholar
Raiswell, R., Whaler, K., Dean, S., Coleman, M. L., and Briggs, D. E. G.. 1993. A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Marine Geology 113:89100.CrossRefGoogle Scholar
Robinson, J. A., and Tiedje, J. M.. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Archives of Microbiology 137:2632.CrossRefGoogle Scholar
Sagemann, J., Bale, S. J., Briggs, D. E. G., and Parkes, R. J.. 1999. Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochimica et Cosmochimica Acta 63:10891095.CrossRefGoogle Scholar
Schiffbauer, J. D., Xiao, S., Cai, Y., Wallace, A. F., Hua, H., Hunter, J., Xu, H., Peng, Y., and Kaufman, A. J.. 2014. A unifying model for Neoproterozoic–Paleozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications 5:112.CrossRefGoogle Scholar
Scudder, S. H. 1876. Fossil Coleoptera from the Rocky Mountain Tertiaries. Bulletin of the United States Geological and Geographical Survey of the Territories 2:7787.Google Scholar
Scudder, S. H. 1890. The Tertiary insects of North America. Report of the United States Geological Survey of the Territories 13:1734.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F.. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society B 311:523.Google Scholar
Shcherbakov, D. E. 2006. The earliest find of Tropiduchidae (Homoptera: Auchenorrhyncha), representing a new tribe, from the Eocene of Green River, USA, with notes on the fossil record of higher Fulgoroidea. Russian Entomological Journal 15:315322.Google Scholar
Shen, C., Aldridge, R. J., Williams, M., Vandenbroucke, T. R. A., and Zhang, X.. 2013. Earliest chitinozoans discovered in the Cambrian Duyun Fauna of China. Geology 41:191194.CrossRefGoogle Scholar
Smith, D. M. 2000. Beetle taphonomy in a recent ephemeral lake, southeastern Arizona. Palaios 15:152160.2.0.CO;2>CrossRefGoogle Scholar
Smith, D. M., and Moe-Hoffman, A. P.. 2007. Taphonomy of Diptera in lacustrine environments: a case study from Florissant Fossil Beds, Colorado. Palaios 22:623629.CrossRefGoogle Scholar
Smith, D. M., Cook, A., and Nufio, C. R.. 2006. How physical characteristics of beetles affect their fossil preservation. Palaios 21:305310.CrossRefGoogle Scholar
Smith, M. E., Carroll, A. R., and Singer, B. S.. 2008. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geological Society of America Bulletin 120:5484.CrossRefGoogle Scholar
Smith, M. E., Chamberlain, K. R., Singer, B. S., and Carroll, A.R.. 2010. Eocene clocks agree: coeval 40Ar/39Ar, U-Pb, and astronomical ages from the Green River Formation. Geology 38:527530.CrossRefGoogle Scholar
Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., Flannery, M. B., and Wuttke, M.. 1997. Preservation of chitin in 25-million-year-old fossils. Science 276:15411543.CrossRefGoogle Scholar
Stankiewicz, B. A., Scott, A. C., Collinson, M. E., Finch, P., Mösle, B., Briggs, D. E. G., and Evershed, R. P.. 1998. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: implications for the origin of kerogen. Journal of the Geological Society, London 155:453462.CrossRefGoogle Scholar
Tänavsuu-Milkeviciene, K., and Sarg, J. F.. 2012. Evolution of an organic-rich lake basin—stratigraphy, climate and tectonics: Piceance Creek Basin, Eocene Green River Formation. Sedimentology 59:17351768.CrossRefGoogle Scholar
Tegelaar, E. W., De Leeuw, J. W., Derenne, S., and Largeau, C.. 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta 53:31033106.CrossRefGoogle Scholar
Thoene-Henning, J., Smith, D. M., Nufio, C. R., and Meyer, H. W.. 2012. Depositional setting and fossil insect preservation: a study of the late Eocene Florissant Formation, Colorado. Palaios 27:481488.CrossRefGoogle Scholar
Walker, L. J. 2015. Diversity of Eocene Coleoptera in Colorado during a global cooling event. M.S. thesis. University of Colorado Boulder, Boulder.Google Scholar
Walker, L. J., Dahlberg, E., Anderson, E. P., Leckey, E. H., and Smith, D. M.. 2013. Exceptional preservation and diversity of insects from the Paleoburn locality of the Eocene Green River Formation of Colorado. Geological Society of America Abstracts with Programs 45:316.Google Scholar
Wang, B., Zhao, F., Zhang, H., Fang, Y., and Zheng, D.. 2012. Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27:708712.CrossRefGoogle Scholar
Wilby, P. R., and Briggs, D. E. G.. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios 20:493502.CrossRefGoogle Scholar
Wilson, M. V. H. 1980. Eocene lake environments: depth and distance-from-shore variation in fish, insect, and plant assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 32:2144.CrossRefGoogle Scholar
Xian-Guang, H., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Xiang-Hong, F.. 2004. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell Science, Malden, Mass.Google Scholar
Xiao, S., and Knoll, A. H.. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. Journal of Paleontology 74:767788.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H.. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology 76:347376.2.0.CO;2>CrossRefGoogle Scholar
Young, R. G. 1995. Stratigraphy of Green River Formation in Piceance Creek Basin, Colorado. Pp. 114. in W. R. Averett, ed. The Green River Formation in Piceance Creek and Eastern Uinta Basins. Grand Junction Geological Society, Grand Junction, Colo.Google Scholar
Yuan, X., Xiao, S., Li, J., Yin, L., and Cao, R.. 2001. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian Formation in Anhui, South China. Precambrian Research 107:253263.CrossRefGoogle Scholar
Zhang, X., and Briggs, D. E. G.. 2007. The nature and significance of the appendages of Opabinia from the middle Cambrian Burgess Shale. Lethaia 40:161173.CrossRefGoogle Scholar