Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T13:15:13.477Z Has data issue: false hasContentIssue false

Relative and absolute abundance of trilobites and rhynchonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range

Published online by Cambridge University Press:  08 April 2016

Seth Finnegan
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521. E-mail: [email protected]
Mary L. Droser
Affiliation:
Department of Earth Sciences, University of California, Riverside, California 92521. E-mail: [email protected]

Abstract

Relative abundance data are of primary importance in paleoecology, but it is not always obvious how they should be interpreted. Because relative abundance is expressed as a proportion of the total sample, change in the abundance of one group necessarily changes the relative abundance of all groups in the sample. There are two possible interpretations for a trend in the relative abundance of a taxon: an “active” scenario in which the trend reflects change in the population density of the group itself, or a “passive” scenario in which the change is driven by population changes in other taxa. To discriminate between these scenarios it is necessary to collect absolute abundance data (abundance expressed as a function of sample area or volume).

We examine both absolute and relative abundance trends through a major paleoecological transition: the shift from trilobite-dominated to brachiopod-dominated paleocommunities in shallow marine carbonates spanning the Lower/Middle Ordovician boundary in western Utah and eastern Nevada. We sampled 61 carbonate mudstone and wackestone beds from the upper Ibex Series (Lower Ordovician) and lower Whiterock Series (Middle Ordovician) at three sections that span the boundary. All samples come from the shallow subtidal Bathyurid trilobite biofacies. Samples were broken into small pieces, and all skeletal fragments >2 mm were identified to the finest possible taxonomic level. Consistent with previous work on this interval, the relative abundance of trilobites declines sharply across the boundary, while the relative abundance of brachiopods increases. Absolute abundance data indicate that the decline in trilobite abundance is genuine and not an artifact of normalization. The trend is not easily explained by sampling bias, facies distribution, taphonomic regime, or sedimentation style.

The dramatic shift in abundance contrasts with relatively minor changes in relative genus richness across the boundary. This is partly ascribable to differences in the relative abundance structure of trilobite faunas. Though comparable numbers of trilobite and brachiopod genera occur above and below the boundary, the trilobite fauna from the upper Ibex Series has lower evenness then the lower Whiterock Series fauna. Hence sampled trilobite richness is high in the lower Whiterock despite the small number of specimens. This highlights the importance of collecting abundance data. Although these data suggest that in at least some cases richness and abundance patterns are not closely coupled, more robust richness data are necessary to confirm this conclusion.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M., Fortey, R. A., and Westrop, S. R. 1998. Post-Cambrian trilobite diversity and evolutionary faunas. Science 280:19221925.CrossRefGoogle ScholarPubMed
Adrain, J. M., Westrop, S. R., Chatterton, B. D. E., and Ramsköld, L. 2000. Silurian trilobite alpha diversity and the end-Or-dovician mass extinction. Paleobiology 26:625646.Google Scholar
Adrain, J. M., Westrop, S. R., Landing, E., and Fortey, R. A. 2001. Systematics of the Ordovician trilobites Ischyrotoma and Dimeropygiella, with species from the type Ibexian area, western USA. Journal of Paleontology 75:947971.Google Scholar
Adrain, J. M., Edgecombe, G. D., Fortey, R. A., Hammer, Ø., Laurie, J. R., McCormick, T., Owen, A. W., Waisfeld, B., Webby, B. D., Westrop, S. R., and Zhou, Z.-y. 2004. Trilobites. Pp. 231254in Webby, et al. 2004b.Google Scholar
Aitchison, J. 1981. A new approach to null correlations of proportions. Journal of Mathematical Geology 13:175189.Google Scholar
Aitchison, J. 1982. The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society 44:139177.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety; the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A. 2000. Taphonomy and paleobiology. Paleobiology 26:103147.Google Scholar
Best, M. M. R., and Kidwell, S. M. 2000a. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 26:80102.2.0.CO;2>CrossRefGoogle Scholar
Best, M. M. R., and Kidwell, S. M. 2000b. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types. Paleobiology 26:103115.Google Scholar
Braithwaite, L. F. 1976. Graptolites from the Lower Ordovician Pogonip Group of western Utah. Geological Society of America Special Paper 166:57.Google Scholar
Callender, W. R., Staff, G. M., Parsons-Hubbard, K. M., Powell, E. N., Rowe, G. T., Walker, S. E., Brett, C. E., Raymond, A., Carlson, D. D., White, S., and Heise, E. A. 2002. Taphonomic trends along a forereef slope: Lee Stocking Island, Bahamas. I. Location and water depth. Palaios 17:5065.Google Scholar
Chave, K. E. 1964. Skeletal durability and preservation. Pp. 377387in Imbrie, J. and Newell, N., eds. Approaches to paleoecology. Wiley, New York.Google Scholar
Copper, P. 1997. Articulate brachiopod shellbeds: Silurian examples from Anticosti, eastern Canada. Geobios Mémoire Spécial 20:133148.Google Scholar
Cummins, H., Powell, E. N., Newton, H. J., Stanton, R. J. Jr., and Staff, G. 1986a. Assessing transportation by the covariance of species with comments on contagious and random distribution. Lethaia 19:122.Google Scholar
Cummins, H., Powell, E. N., Stanton, R. J., and Staff, G. 1986b. The rate of taphonomic loss in modern benthic habitats—how much of the potentially preservable community is preserved. Palaeogeography, Palaeoclimatology, Palaeoecology 52(3–4):291320.Google Scholar
Droser, M. L., Fortey, R. A., and Li, X. 1996. The Ordovician radiation. American Scientist 84:122131.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. American Association of Petroleum Geologists Memoir 1:108121.Google Scholar
Flessa, K. W., and Brown, T. J. 1983. Selective solution of macroinvertebrate calcareous hard parts—a laboratory study. Lethaia 16:193205.Google Scholar
Fortey, R. A., and Droser, M. L. 1996. Trilobites at the base of the Middle Ordovician, western United States. Journal of Paleontology 70:7197.Google Scholar
Fortey, R. A., and Droser, M. L. 1999. Trilobites from the base of the type Whiterockian (Middle Ordovician) in Nevada. Journal of Paleontology 73:182201.Google Scholar
Gilinsky, N. L., and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts—a taphonomic limitation of the paleontological record. Paleobiology 20:245258.Google Scholar
Glover, C. P., and Kidwell, S. M. 1993. Influence of organic matrix on the post-mortem destruction of molluscan shells. Journal of Geology 101:729747.Google Scholar
Grayson, D. K. 1984. Quantitative zooarchaeology: topics in the analysis of archaeological faunas. Academic Press, London.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Palaeontological Statistics package for education and data analysis. Palaeontologica Electronica 4.Google Scholar
Harper, D. A. T., and MacNiocaill, C. 2002. Early Ordovician brachiopod biodiversity: comparing some platforms, margins and intra-oceanic sites around the Iapetus ocean. In Crame, J. A. and Owens, A. W., eds. Palaeobiogeography and biodiversity change: the Ordovician and Mesozoic–Cenozoic radiations. Geological Society of London Special Publication 194:2534.Google Scholar
Harper, D. A. T., Cocks, L. R. M., Popov, L. E., Sheehan, P. M., Bassett, M. G., Copper, P., Holmer, L. E., Jin, J., and Rong, J. 2004. Brachiopods. Pp. 157178in Webby, et al. 2004bGoogle Scholar
Hayek, L. C., and Buzas, M. A. 1997. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hintze, L. F. 1951. Lower Ordovician detailed stratigraphic sections for western Utah, of particular interest to geologists concerned with petroleum possibilities of the Great Basin. Utah Geological and Mineralogical Survey Bulletin 39.Google Scholar
Hintze, L. F. 1953. Lower Ordovician trilobites from western Utah and eastern Nevada. Utah Geological and Mineralogical Survey Bulletin 48.Google Scholar
Hintze, L. F. 1973. Lower and Middle Ordovician stratigraphic sections in the Ibex area, Millard County, Utah. Brigham Young University Geology Studies 20:336.Google Scholar
Hollman, R. 1968. Zur morphologie rezenter molluskan-bruch-schille. Paläontologische Zeitschrift 42:217235.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jackson, D. A. 1997. Compositional data in community ecology: the paradigm or peril of proportions? Ecology 78:929940.Google Scholar
Jensen, R. G. 1967. Ordovician brachiopods from the Pogonip Group of Millard County, western Utah. Brigham Young University Geology Studies 14:67100.Google Scholar
Johns, R. A. 1994. Ordovician Lithistid Sponges of the Great Basin. Nevada Bureau of Mines and Geology Open-File Report 94-1. Las Vegas.Google Scholar
Kellogg, H. E. 1963. Paleozoic Stratigraphy of the southern Egan Range, Nevada. Geological Society of America Bulletin 74:685708.Google Scholar
Kidwell, S. M. 1986. Models for fossil concentrations—paleobiologic implications. Paleobiology 12:624.Google Scholar
Kidwell, S. M., and Bosence, D. W. J. 1991. Taphonomy and time-averaging of marine shelly faunas. Pp. 115209in Allison, P. A. B. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1994. Patterns in bioclastic accumulation through the Phanerozoic—changes in input or in destruction. Geology 22:11391143.Google Scholar
Kidwell, S. M., and Flessa, K. W. 1995. The quality of the fossil record—populations, species, and communities. Annual Review of Ecology and Systematics 26:269299.Google Scholar
Kucera, M., and Malmgren, B. A. 1998. Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera. Paleobiology 24:4963.Google Scholar
Li, X., and Droser, M. L. 1999. Lower and Middle Ordovician shell beds from the Basin and Range province of the western United States (California, Nevada, and Utah). Palaios 14:215233.Google Scholar
Lupia, R., Lidgard, S., and Crane, P. R. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25:305340.CrossRefGoogle Scholar
Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J.Google Scholar
Martin, R. E. 1999. Taphonomy: a process approach. Cambridge University Press, Cambridge.Google Scholar
McDowell, R. R. 1987. Paleogeography, depositional environments, and petroleum potential of the Middle Ordovician Kanosh Formation. Ph.D. dissertation. Colorado School of Mines, Golden.Google Scholar
McFarland, S., Westrop, S. R., and Cheel, R. J. 1999. Allogenic versus autogenic processes in the genesis of Middle Ordovician brachiopod-rich shell beds, Verulam Formation, Ontario. Palaios 14:282287.Google Scholar
McKinney, F. K., Lidgard, S., Sepkoski, J. J. Jr., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807809.Google Scholar
Miller, A. I. 1997. Coordinated stasis or coincident relative stability? Paleobiology 23:155164.Google Scholar
Miller, A. I., and Cummins, H. 1990. A numerical model for the formation of fossil assemblages: estimating the amount of post-mortem transport along environmental gradients. Palaios 5:303316.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Miller, A. I., Holland, S. M., Droser, M. L., and Patzkowsky, M. E. 1998. Dynamics of the Ordovician Radiation: a comment on Westrop and Adrain. Paleobiology 24:524528.Google Scholar
Norris, R. D. 1986. Taphonomic gradients in shelf fossil assemblages: Pliocene Purisima Formation, California. Palaios 1:256270.CrossRefGoogle Scholar
Novack-Gottshall, P. M., and Miller, A. I. 2003a. Comparative geographic and environmental diversity dynamics of gastropods and bivalves during the Ordovician Radiation. Paleobiology 29:576604.Google Scholar
Novack-Gottshall, P. M., and Miller, A. I. 2003b. Comparative taxonomic richness and abundance of Late Ordovician gastropods and bivalves in mollusc-rich strata of the Cincinnati Arch. Palaios 18:559571.Google Scholar
Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104:277287.Google Scholar
Pandolfi, J. M. 1999. Response of Pleistocene coral reefs to environmental change over long temporal scales. American Zoologist 39:113130.Google Scholar
Parsons, K. M., and Brett, C. E. 1991. Taphonomic processes and biases in modern marine environments: an actualistic perspective on fossil assemblage preservation. Pp. 2265in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Peters, S. E. 2004a. Evenness in Cambro-Ordovician benthic marine Communities in North America. Paleobiology 30:326345.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E. 2004b. Relative abundance of Sepkoski's Evolutionary Faunas in Cambrian-Ordovician deep subtidal environments in North America. Paleobiology 30:543560.Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.Google Scholar
Ross, R. J. Jr. 1951. Stratigraphy of the Garden City Formation in northeastern Utah, and its trilobite faunas. Yale Peabody Museum Bulletin 6:161.Google Scholar
Ross, R. J. Jr. 1964. Middle and Lower Ordovician formation in southern Nevada and adjacent California, with a section on paleotectonic significance of Ordovician sections south of the Las Vegas shear zone by Ross, R. J. Jr. and Longwell, C. R.U.S. Geological Survey Bulletin 1180-C.Google Scholar
Ross, R. J. Jr. 1977. Ordovician paleogeography of the western United States. Pp. 1938in Stewart, J. H., Stevens, C. H., and Fritsche, A. E., eds. Paleozoic paleogeography of the western United States. Pacific coast paleogeography symposium 1. Pacific Section, Society of Economic Paleontologists and Mineralogists, Long Beach, Calif.Google Scholar
Ross, R. J. Jr., James, N. P., Hintze, L. F., and Poole, F. G. 1989. Architecture and evolution of a Whiterockian (early Middle Ordovician) carbonate platform, Basin Ranges of western U.S.A. In Crevallo, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds. Controls on carbonate platform and basin development. SEPM Special Publication 44:167185.Google Scholar
Ross, R. J. Jr., Hintze, L. H., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian, lowermost series in the North American Ordovician, with a section on echinoderm biostratigraphy by Sprinkle, J., and Guensberg, T. E. In Taylor, M. E., ed. Early Paleozoic biochronology of the Great Basin, western United States. U.S. Geological Survey Professional Paper 1579:150.Google Scholar
Sanders, H. L. 1968. Benthic marine diversity: a comparative study. American Naturalist 102:660668.Google Scholar
Schäfer, W. 1972. Ecology and paleoecology of marine environments. University of Chicago Press, Chicago.Google Scholar
Schneider, C. L. 2001. Community diversity in a Pennsylvanian phylloid algal mound from Texas. Geological Society of America Abstracts with Programs 33:A377.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, NJ.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673718in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.Google Scholar
Speyer, S. E. 1991. Trilobite taphonomy: a basin for comparative studies of arthropod preservation, functional anatomy, and behavior. Pp. 194219in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Springer, D. A., and Miller, A. I. 1990. Levels of spatial variability; the “community” problem. In Miller, W. III, ed. Paleo-community temporal dynamics: the long-term development of multispecies assemblies. Paleontological Society Special Publication 5:1330. Lawrence, Kans.Google Scholar
SPSS, Inc. 1998. Systat, Version 9. 0.Google Scholar
Staatz, M. H., and Carr, W. J. 1964. Geology and mineral deposits of the Thomas and Dugway Ranges, Juab and Tooele Counties, Utah. U.S. Geological Survey Professional Paper 415:188.Google Scholar
Sweet, W. C., and Tolbert, C. M. 1997. An Ibexian (Lower Ordovician) reference section in the southern Egan Range, Nevada, for a conodont-based chronostratigraphy. U.S. Geological Survey Professional Paper 1579-B:5184.Google Scholar
Walter, L. M. 1985. Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis. SEPM Special Publication 36:316.Google Scholar
Webby, B. D., Cooper, R. A., Bergström, S., and Paris, F. 2004a. Stratigraphic framework and time slices. Pp. 4147in Webby, et al. 2004b.Google Scholar
Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G., eds. 2004b. The Great Ordovician Biodiversification event. Columbia University Press, New York.Google Scholar
Westrop, S. R. 1986. Taphonomic versus ecologic controls on taxonomic relative abundance patterns in tempestites. Lethaia 19:123132.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998a. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:116.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998b. Trilobite diversity and the Ordovician Radiation: a reply to Miller et al. Paleobiology 24:529533.Google Scholar
Westrop, S. R., Tremblay, J. V., and Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore paleocommunities—dilution or displacement? Palaios 10:7579.Google Scholar
Williams, A., and Harper, D. A. T. 2000. Orthida. Pp. 714782in Williams, A. et al. Brachiopoda 3. Linguliformea, Craniiformea, and Rynchonelliformea. Part H (revised) ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas Press, Lawrence.Google Scholar
Wing, S. L., Hickey, L. J., and Swisher, C. C. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. Science 363:342344.Google Scholar