Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T11:30:46.276Z Has data issue: false hasContentIssue false

Relating Ediacaran Fronds

Published online by Cambridge University Press:  07 March 2017

T. Alexander Dececchi
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada. E-mail: [email protected], [email protected]
Guy M. Narbonne
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada. E-mail: [email protected], [email protected]
Carolyn Greentree
Affiliation:
School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia. E-mail: [email protected]
Marc Laflamme
Affiliation:
Department of Chemical and Physical Sciences, University of TorontoMississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada. E-mail: [email protected]

Abstract

Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They represent one of the most widespread and common body forms ranging across all major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, but uncertainty over their phylogenetic affinities has led to uncertainty over issues of homology and functional morphology between and within organisms displaying this ecomorphology. Here we present the first large-scale, multigroup cladistic analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted affinities to the Arboreomorpha, Erniettomorpha, and Rangeomorpha. Using a newly derived morphological character matrix that incorporates multiple axes of potential phylogenetically informative data, including architectural, developmental, and structural qualities, we seek to illuminate the evolutionary history of these organisms. We find strong support for existing classification schema and devise apomorphy-based definitions for each of the three frondose clades examined here. Through a rigorous cladistic framework it is possible to discern the pattern of evolution within and between these clades, including the identification of homoplasies and functional constraints. This work both validates earlier studies of Ediacaran groups and accentuates instances in which previous assumptions of their natural history are uninformative.

Type
Paleobiology Letters - Rapid Communication
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Antcliffe, J. B., and Brasier, M. D.. 2007. Charnia and sea pens are poles apart. Journal of the Geological Society 164:4951.CrossRefGoogle Scholar
Bamforth, E. L., Narbonne, G. M., and Anderson, M.. 2008. Growth and ecology of a multi-branched Ediacaran rangeomorph from the Mistaken Point assemblage, Newfoundland. Journal of Paleontology 82:763777.CrossRefGoogle Scholar
Boag, T. H., Darroch, S. A. F., and Laflamme, M.. 2016. Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils. Paleobiology 42:574594.CrossRefGoogle Scholar
Brasier, M. D., and Antcliffe, J. B.. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society 166:363384.CrossRefGoogle Scholar
Brasier, M. D., Antcliffe, J. B., and Liu, A. G.. 2012. The architecture of Ediacaran fronds. Palaeontology 55:11051124.CrossRefGoogle Scholar
Bremer, B., Jansen, R. K., Oxelman, B., Backlund, M., Lantz, H., and Kim, K.-J.. 1999. More characters or more taxa for a robust phylogeny—case study from the Coffee Family (Rubiaceae). Systematic Biology 48:413435.CrossRefGoogle ScholarPubMed
Budd, G. E., and Jensen, S.. 2015. The origin of the animals and a “Savannah” hypothesis for early bilaterian evolution. Biological Reviews doi: 10.1111/brv.12239.CrossRefGoogle Scholar
Burzynski, G., and Narbonne, G. M.. 2015. The discs of Avalon: relating discoid fossils to frondose organisms in the Ediacaran of Newfoundland, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 434:3445.CrossRefGoogle Scholar
Conway Morris, S. 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36:593635.Google Scholar
Darroch, S. A. F., Sperling, E. A., Boag, T. H., Racicot, R. A., Mason, S. J., Morgan, A. S., Tweedt, S., Myrow, P., Johnston, D. T., Erwin, D. H., and Laflamme, M.. 2015. Biotic replacement and mass extinction of the Ediacara biota. Proceedings of the Royal Society of London B 282:129–138.CrossRefGoogle Scholar
Droser, M. L., and Gehling, J. G.. 2015. The advent of animals: the view from the Ediacaran. Proceedings of the National Academy of Sciences USA 112:4865–4870.CrossRefGoogle Scholar
Erwin, D., and Valentine, J.. 2013. The Cambrian explosion: the construction of animal biodiversity. Roberts and Company, Greenwood Village, Colo P. 416.Google Scholar
Erwin, D., Laflamme, M., Tweedt, S., Sperling, E., Pisani, D., and Peterson, K.. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.CrossRefGoogle ScholarPubMed
Fedonkin, M. A., and Waggoner, B.. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:868871.CrossRefGoogle Scholar
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P.. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Gehling, J. G., and Narbonne, G. M.. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences 44:367387.Google Scholar
Glaessner, M. F.. 1979. Biogeography and biostratigraphy: Precambrian. Pp. A79–A118 in R. C. Moore, R. Robinson, C. Teichert, J. Keim, L. McCormick, and R. Williams, eds. Introduction, fossilization (taphonomy), biogeography and biostratigraphy. Part A of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo. and University of Kansas, Lawrence.Google Scholar
Gold, D. A., Runnegar, B., Gehling, J. G., and Jacobs, D. K.. 2015. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia . Evolution and Development 17:315324.CrossRefGoogle ScholarPubMed
Grazhdankin, D. V. 2014. Patterns of evolution of the Ediacaran soft-bodied biota. Paleontology 45:5778.CrossRefGoogle Scholar
Grazhdankin, D. V., and Seilacher, A.. 2002. Underground Vendobionta from Nambia. Journal of Paleontology 88:269283.CrossRefGoogle Scholar
Hoyal Cuthill, J. F., and Conway Morris, S.. 2014. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan. Proceedings of the National Academy of Sciences USA 111:13122–13126.CrossRefGoogle Scholar
Ivantsov, A. Y. 2016. Reconstruction of Charniodiscus yorgensis (Macrobiota from the Vendian of the White Sea). Paleontological Journal 50:112.CrossRefGoogle Scholar
Ivantsov, A. Y., Narbonne, G. M., Trusler, P. W., Greentree, C., and Vickers-Rich, P.. 2016. Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia 49:540554.CrossRefGoogle Scholar
Kenchington, C. G., and Wilby, P.. 2014. Of time and taphonomy: preservation in the Ediacaran. In M. Laflamme, J. D. Schiffbauer, and S. A. F. Darroch, eds. Reading and writing of the fossil record: preservational pathways to exceptional fossilization. Paleontological Society Papers 20:101–122.CrossRefGoogle Scholar
Laflamme, M., and Narbonne, G.. 2008. Ediacaran fronds. Palaeogeography Palaeoclimatology Palaeoecology 258:162179.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G., and Anderson, M.. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology 78:827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Xiao, S. H., and Kowalewski, M.. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences USA 106:14438–14443.CrossRefGoogle Scholar
Laflamme, M., Flude, L., and Narbonne, G.. 2012. Ecological tiering and the evolution of a stem: the oldest stemmed frond from the Ediacaran of Newfoundland, Canada. Journal of Paleontology 86:193200.CrossRefGoogle Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H.. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23:558573.CrossRefGoogle Scholar
Liu, A. G., Matthews, J. J., and McIlroy, D.. 2016. The Beiothukis/Culmofrons problem and its bearing on Ediacaran macroossil taxonomy: evidence from an exceptional new fossil locality. Palaeontology 59:4558.CrossRefGoogle Scholar
Narbonne, G. M.. 2004. Modular construction of early Ediacaran complex life forms. Science 305:11411144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33:421442.CrossRefGoogle Scholar
Narbonne, G., Laflamme, M., Greentree, C., and Trusler, P.. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland. Journal of Paleontology 83:503523.CrossRefGoogle Scholar
Narbonne, G., Laflamme, M., Trusler, P., Dalrymple, R. W., and Greentree, C.. 2014. Deep-water Ediacaran fossils from northwestern Canada: taphonomy,ecology, and evolution. Journal of Paleontology 88:207223.CrossRefGoogle Scholar
O’Keefe, F. R., and Wagner, P. J.. 2001. Inferring and testing hypotheses of cladistic character dependence by using character compatibility. Systematic Biology 50:657675.CrossRefGoogle ScholarPubMed
Pflug, H. 1972. Systematik der jung-präkambrischen Petalonamae Pflug 1970. Palaontologische Zeitschrift 46:5667.CrossRefGoogle Scholar
Pu, J. P., Bowing, S. A., Ramezani, J., Myrow, P., Raub, T. D., Landing, E., Mills, A., Hodgin, E., and Macdonald, F. A.. 2016. Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44:955958.CrossRefGoogle Scholar
Simões, T. R., Caldwell, M. W., Palci, A., and Nydam, R. L.. 2016. Giant taxon-character matrices: quality of character constructions remains critical regardless of size. Cladistics doi: 10.1111/cla.12163.CrossRefGoogle Scholar
Swafford, D. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0. Sinauer, Sunderland, Mass.Google Scholar
Vickers-Rich, P., Ivantsov, A. Y., Trusler, P., Narbonne, G. M., Hall, M., Wilson, S. A., Greentree, C., Fedonkin, M. A., Elliott, D. A., Hoffmann, K. H., and Schneider, G. I. C.. 2013. Reconstructing Rangea: new discoveries from the Ediacaran of southern Nambia. Journal of Paleontology 87:115.CrossRefGoogle Scholar
Wiens, J. J. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52:528538.CrossRefGoogle ScholarPubMed
Wiens, J. J., and Morrill, M. C.. 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology 60:719731.CrossRefGoogle ScholarPubMed
Williams, E. E. 1972. The origins of faunas—evolution of lizard congeners in a complex island fauna: a trial analysis. Evolutionary Biology 6:4789.Google Scholar
Xiao, S., and Laflamme, M.. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution 24:3140.CrossRefGoogle ScholarPubMed