Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T22:43:02.822Z Has data issue: false hasContentIssue false

Regional-scale spatial heterogeneity in the late Paleocene paratropical forests of the U.S. Gulf Coast

Published online by Cambridge University Press:  08 April 2016

Phillip E. Jardine
Affiliation:
School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail: [email protected]
Guy J. Harrington
Affiliation:
School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail: [email protected]
Thomas A. Stidham
Affiliation:
Department of Biology, Texas A&M University, 3258 TAMU, College Station, Texas 77843-3258, U.S.A.

Abstract

The study of spatial patterns in biotic compositional variability in deep time is key to understanding the macroecological response of species assemblages to global change. Globally warm climatic phases are marked by the expansion of megathermal climates into currently extra-tropical areas. However, there is currently little information on whether vegetation in these “paratropical” regions resembled spatially modern tropical or extra-tropical biomes. In this paper we explore spatial heterogeneity in extra-tropical megathermal vegetation, using sporomorph (pollen and spore) data from the late Paleocene Calvert Bluff and Tuscahoma Formations of the formerly paratropical U.S. Gulf Coast (Texas, Mississippi, and Alabama). The data set comprises 139 sporomorph taxa recorded from 56 samples. Additive diversity partitioning, nonmetric multidimensional scaling, and cluster analysis show compositional heterogeneity both spatially and lithologically within the U.S. Gulf Coastal Plain (GCP) microflora. We then use sporomorph data from Holocene lake cores to compare spatial patterns in the late Paleocene GCP with modern tropical and extra-tropical biomes. Distance decay analysis of the Holocene data reveals a higher rate of spatial turnover in tropical versus extra-tropical vegetation types, consistent with a latitudinal gradient in floral compositional heterogeneity. The specific combination of rate and scale dependency of distance decay in the Holocene assemblages prevented us from associating the late Paleocene GCP with any particular modern biome. Our results demonstrate the importance of spatial scale, taphonomy, and lithology in determining patterns of spatial heterogeneity, and show the potential of the fossil sporomorph record for studying spatial patterns and processes in deep time.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, J. A. R., and Muller, J. 1975. Palynological study of a Holocene peat and a Miocene coal deposit from NW Borneo. Review of Palaeobotany and Palynology 19:291351.Google Scholar
Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:3246.Google Scholar
Beard, K. C. 2008. The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences USA 105:38153818.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin 96:14071418.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. I., and Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM (Society for Sedimentary Geology) Special Publication 54:126212.Google Scholar
Berrio, J. C., Hooghiemstra, H., Behling, H., Botero, P., and Van der Borg, K. 2002. Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12:3548.Google Scholar
Bivand, R., Anselin, L., Berke, O., Bernat, A., Carvalho, M., Chun, Y., Dormann, C., Dray, S., Halbersma, R., Lewin-Koh, N., Ma, J., Millo, G., Mueller, W., Ono, H., Peres-Neto, P., Reder, M., Tiefelsdorf, M., and Yu, D. 2007. Spatial dependence: weighting schemes, statistics and models. R package version 0.4–7. http://cran.r-project.org/web/packages/spdep/index.html.Google Scholar
Bush, A. M., and Brame, R. I. 2010. Multiple paleoecological controls on the composition of marine fossil assemblages from the Frasnian (Late Devonian) of Virginia, with a comparison of ordination methods. Paleobiology 36:573591.Google Scholar
Bush, M. B. 1995. Neotropical plant reproductive strategies and fossil pollen representation. American Naturalist 145:594609.Google Scholar
Bush, M. B., and Rivera, R. 2001. Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography 10:359367.Google Scholar
Carroll, R. E. 1999. Morphology and distribution and Bagelopollis verrucatus (Frederiksen 1988) gen. et comb. nov. from lower Tertiary coastal plain deposits of the southeastern U.S.A. Palynology 23:5566.Google Scholar
Chase, J. M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:13881391.Google Scholar
Chave, J. 2008. Spatial variation in tree species composition across tropical forests: pattern and process. Pp. 1130 in Carson, W. P.and Schnitzer, S. A., eds. Tropical forest community ecology. Wiley-Blackwell, Chichester, U.K.Google Scholar
Clarke, K. R., and Green, R. H. 1988. Statistical design and analysis for a biological effects study. Marine Ecology Progress Series 46:213226.Google Scholar
Colinvaux, P. A., and De Oliveira, P. E. 2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:5163.Google Scholar
Colwell, R. K., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London B 345:101118.Google Scholar
Comita, L. S., Muller-Landau, H. C., Aguilar, S., and Hubbell, S. P. 2010. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330332.Google Scholar
Condit, R., Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Nunez, P., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., and Hubbell, S. P. 2002. Beta-diversity in tropical forest trees. Science 295:666669.Google Scholar
Coronado, E. N. H., Baker, T. R., Phillips, O. L., Pitman, N. C. A., Pennington, R. T., Martinez, R. V., Monteagudo, A., Mogollon, H., Cardozo, N. D., Rios, M., Garcia-Villacorta, R., Valderrama, E., Ahuite, M., Huamantupa, I., Neill, D. A., Laurance, W. F., Nascimento, H. E. M., de Almeida, S. S., Killeen, T. J., Arroyo, L., Nunez, P., and Alvarado, L. F. 2009. Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences 6:27192731.Google Scholar
Cox, R. T., and Van Arsdale, R. B. 2002. The Mississippi Embayment, North America: a first order continental structure generated by the Cretaceous superplume mantle event. Journal of Geodynamics 34:163176.Google Scholar
Crabaugh, J. P., and Elsik, W. C. 2000. Calibration of the Texas Wilcox Group to the revised Cenozoic time scale: recognition of four, third-order clastic wedges (2.7–3.3 m.y. in duration). South Texas Geological Society Bulletin 41 (3):1017.Google Scholar
Craddock, W. P. 1947. Aerial geology of the Carrizo Sandstone at Bastrop, Bastrop County, Texas. M.S. thesis. University of Texas, Austin.Google Scholar
Crist, T. O., Veech, J. A., Gering, J. C., and Summerville, K. S. 2003. Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. American Naturalist 162:734743.Google Scholar
Crowley, S. S., Warwick, P. D., Ruppert, L. F., and Pontolillo, J. 1997. The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert Mine area, east-central Texas. International Journal of Coal Geology 34:327343.Google Scholar
Davis, M. B. 2000. Palynology after Y2K—understanding the source area of pollen in sediments. Annual Review of Earth and Planetary Sciences 28:118.Google Scholar
DeVries, P. J., Murray, D., and Lande, R. 1997. Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society 62:343364.Google Scholar
DeVries, P. J., Lande, R., and Murray, D. 1999. Associations of co-mimetic ithomiine butterflies on small spatial and temporal scales in a neotropical rainforest. Biological Journal of the Linnean Society 67:7385.Google Scholar
Dickey, R. L., and Yancey, T. E. 2010. Palynological age control of sediments bracketing the Paleocene-Eocene boundary, Bastrop, Texas. Gulf Coast Association of Geological Societies Transactions 60:717724.Google Scholar
Duque, A., Phillips, J. F., von Hildebrand, P., Posada, C. A., Prieto, A., Rudas, A., Suescun, M., and Stevenson, P. 2009. Distance decay of tree species similarity in protected areas on terra firme forests in Colombian Amazonia. Biotropica 41:599607.Google Scholar
Elsik, W. C. 1978. Palynology of Gulf Coast lignites: the stratigraphic framework and depositional environments. In Kaiser, W. R., ed. Gulf Coast Lignite Conference: geology, utilization, and environmental aspects. Bureau of Economic Geology, University of Texas at Austin, Report of Investigations 90:2132.Google Scholar
Elsik, W. C., and Crabaugh, J. P. 2001. Palynostratigraphy of the Upper Paleocene and Lower Eocene Wilcox Group in the northwestern Gulf of Mexico Basin. Pp. 233237 in Goodman, D. K.and Clarke, R. T., eds. Proceedings of the IX International Palynological Congress, Houston, Texas, U.S.A., 1996. American Association of Stratigraphic Palynologists Foundation, Baton Rouge, La.Google Scholar
Fairchild, W. W., and Elsik, W. C. 1969. Characteristic palynomorphs of the lower Tertiary in the Gulf Coast. Palaeontographica, Abteilung B 128:8189.Google Scholar
Fine, P. V. A., and Ree, R. H. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. American Naturalist 168:796804.Google Scholar
Fisher, W. L., and McGowen, J. H. 1967. Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas. Gulf Coast Association of Geological Societies Transactions 17:105125.Google Scholar
Fitter, A. H., and Hay, R. K. M. 2002. Environmental physiology of plants. Academic Press, London.Google Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.Google Scholar
Frederiksen, N. O. 1979. Paleogene sporomorph biostratigraphy, northeastern Virginia. Palynology 3:129167.Google Scholar
Frederiksen, N. O. 1980a. Paleogene sporomorphs from South Carolina and quantitative correlations with the Gulf Coast. Palynology 4:125179.Google Scholar
Frederiksen, N. O. 1980b. Sporomorphs from the Jackson Group (Upper Eocene) and adjacent strata of Mississippi and western Alabama. U.S. Geological Survey Professional Paper 1084:175.Google Scholar
Frederiksen, N. O. 1988. Sporomorph biostratigraphy, floral changes, and paleoclimatology, Eocene and earliest Oligocene of the Eastern Gulf coast. U.S. Geological Survey Professional Paper 1448:166.Google Scholar
Frederiksen, N. O. 1991. Midwayan (Paleocene) pollen correlations in the eastern United States. Micropaleontology 37:101123.Google Scholar
Frederiksen, N. O. 1994. Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models. Review of Palaeobotany and Palynology 82:225238.Google Scholar
Frederiksen, N. O. 1998. Upper Paleocene and lowermost Eocene angiosperm pollen biostratigraphy of the eastern Gulf Coast and Virginia. Micropaleontology 44:4568.Google Scholar
Frederiksen, N. O., and Christopher, R. A. 1978. Taxonomy and biostratigraphy of late Cretaceous and Paleogene triatriate pollen from South Carolina. Palynology 2:113145.Google Scholar
Fricke, H. C., and Wing, S. L. 2004. Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene. American Journal of Science 304:612635.Google Scholar
Galloway, C. A. 2002. Intertidal flat sequences in the Upper Calvert Bluff Formation (Paleocene-Eocene) of the Sabine Uplift area, East Texas. M.S. thesis. Stephen F. Austin State University, Nacogdoches, Tex.Google Scholar
Gazol, A., and Ibáñez, R. 2009. Variation of plant diversity in a temperate unmanaged forest in northern Spain: behind the environmental and spatial explanation. Plant Ecology 207:111.Google Scholar
Gering, J. C., Crist, T. O., and Veech, J. A. 2003. Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology 17:488499.Google Scholar
Gibson, T. G., Mancini, E. A., and Bybell, L. M. 1982. Paleocene to middle Eocene stratigraphy of Alabama. Transactions of the Gulf Coast Association of Geological Societies 32:289294.Google Scholar
Gilbert, G. S., Howard, E., Ayala-Orozco, B., Bonilla-Moheno, M., Cummings, J., Langridge, S., Parker, I. M., Pasari, J., Schweizer, D., and Swope, S. 2010. Beyond the tropics: forest structure in a temperate forest mapped plot. Journal of Vegetation Science 21:388405.Google Scholar
Gotelli, N. J., and Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.Google Scholar
Haberle, S. G., and Maslin, M. A. 1999. Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon fan, ODP site 932. Quaternary Research 51:2738.Google Scholar
Hammer, Ø., and Harper, D. A. T. 2006. Paleontological data analysis. Blackwell, Oxford.Google Scholar
Harrington, G. J. 2001. Impact of Paleocene/Eocene greenhouse warming on North American paratropical forests. Palaios 16:266278.Google Scholar
Harrington, G. J. 2003. Wasatchian (Early Eocene) pollen floras from the Red Hot Truck Stop, Mississippi, USA. Paleontology 46:725738.Google Scholar
Harrington, G. J. 2004. Structure of the North American vegetation gradient during the late Paleocene/early Eocene warm climate. Evolutionary Ecology Research 6:3348.Google Scholar
Harrington, G. J. 2008. Comparisons between Palaeocene-Eocene paratropical swamp and marginal marine pollen floras from Alabama and Mississippi, USA. Paleontology 51:611622.Google Scholar
Harrington, G. J., and Jaramillo, C. A. 2007. Paratropical floral extinction in the Late Palaeocene-Early Eocene. Journal of the Geological Society, London 164:323332.Google Scholar
Harrington, G. J., Kemp, S. J., and Koch, P. L. 2004. Palaeocene-Eocene paratropical floral change in North America: responses to climate change and plant immigration. Journal of the Geological Society, London 161:173184.Google Scholar
Heim, N. A. 2009. Stability of regional brachiopod diversity structure across the Mississippian/Pennsylvanian boundary. Paleobiology 35:393412.Google Scholar
Heusser, L. E. 1988. Pollen distribution in marine-sediments on the continental margin off northern California. Marine Geology 80:131147.Google Scholar
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski's question. Paleontology 53:12371254.Google Scholar
Holmes, P. L. 1994. The sorting of spores and pollen by water: experimental and field evidence. Pp. 932 in Traverse, A., ed. Sedimentation of organic particles. Cambridge University Press, Cambridge.Google Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Ivany, L. C., Wilkinson, B. H., Lohmann, K. C., Johnson, E. M., McElroy, B. J., and Cohen, G. J. 2004. Intra-annual isotopic variation in Venericardia bivalves: implications for early Eocene temperature, seasonality, and salinity on the U.S. Gulf Coast. Journal of Sedimentary Research 74:719.Google Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.Google Scholar
Jackson, S. T. 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. Pp. 253286 in Traverse, A., ed. Sedimentation of organic particles. Cambridge University Press, Cambridge.Google Scholar
Jacobson, G. L., and Bradshaw, R. H. W. 1981. The selection of sites for paleovegetational studies. Quaternary Research 16:8096.Google Scholar
Janus, T., and Stidham, T. A. 2008. Vertebrate fauna from the Paleogene Calvert Bluff Formation, Texas. Journal of Vertebrate Paleontology 29 (Suppl. to No. 3):96A.Google Scholar
Jaramillo, C. A. 2002. Response of tropical vegetation to Paleogene warming. Paleobiology 28:222243.Google Scholar
Jaramillo, C. A., and Dilcher, D. L. 2001. Middle Paleogene palynology of Central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica, Abteilung B 258:87213.Google Scholar
Jaramillo, C. A., Rueda, M. J., and Mora, G. 2006. Cenozoic plant diversity in the Neotropics. Science 311:18931896.Google Scholar
Jaramillo, C. A., Pardo-Trujillo, A., Rueda, M., Torres, V., Harrington, G. J., and Mora, G. 2007. The palynology of the Cerrejón Formation (upper Paleocene) of northern Colombia. Palynology 31:153189.Google Scholar
Jardine, P. E., and Harrington, G. J. 2008. The Red Hills Mine palynoflora: a diverse swamp assemblage from the late Paleocene of Mississippi, U.S.A. Palynology 32:183204.Google Scholar
Jones, E. L. 1961. Environmental significance of palynomorphs from Lower Eocene sediments of Arkansas. Science 134:1366.Google Scholar
Kenkel, N. C., and Orloci, L. 1986. Applying metric and nonmetric multidimensional-scaling to ecological studies: some new results. Ecology 67:919928.Google Scholar
Kidwell, S. M., and Holland, S. M. 2002. The quality of the fossil record: implications for evolutionary analyses. Annual Review of Ecology and Systematics 33:561588.Google Scholar
Kobashi, T., Grossman, E. L., Yancey, T. E., and Dockery, D. T. 2001. Reevaluation of conflicting Eocene tropical temperature estimates: molluscan oxygen isotope evidence for warm low latitudes. Geology 29:983986.Google Scholar
Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.Google Scholar
Layou, K. M. 2007. A quantitative null model of additive diversity partitioning: examining the response of beta diversity to extinction. Paleobiology 33:116124.Google Scholar
Legendre, P., and Legendre, L. 1998. Numerical ecology. 2d English ed. Elsevier, Amsterdam.Google Scholar
Legendre, P., Lapointe, F-J., and Casgrain, P. 1994. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48:14871499.Google Scholar
Loeblich, A. R., and Tappan, H. 1957. Correlation of the Gulf and Atlantic Coastal Plain Paleocene and lower Eocene formations by means of planktonic foraminifera. Journal of Paleontology 31:11091137.Google Scholar
Mac Nally, R., Fleishman, E., Bulluck, L. P., and Betrus, C. J. 2004. Comparative influence of spatial scale on beta diversity within regional assemblages of birds and butterflies. Journal of Biogeography 31:917929.Google Scholar
Macia, M. J., and Svenning, J. C. 2005. Oligarchic dominance in western Amazonian plant communities. Journal of Tropical Ecology 21:613626.Google Scholar
Magurran, A. E. 2004. Measuring biological diversity. Blackwell Science, Oxford.Google Scholar
Magurran, A. E., and Henderson, P. A. 2003. Explaining the excess of rare species in natural species abundance distributions. Nature 422:714716.Google Scholar
Mancini, E. A. 1981. Assessment of geologic factors controlling the economic recovery of Alabama deep-basin lignite. Research Report of School of Mines and Energy Development, University of Alabama, Tuscaloosa.Google Scholar
Mancini, E. A. 1984. Biostratigraphy of Paleocene strata in southwestern Alabama. Micropaleontology 30:268291.Google Scholar
Mancini, E. A., and Oliver, G. E. 1981. Planktic foraminifers from the Tuscahoma Sand (upper Paleocene) of southwest Alabama. Micropaleontology 27:204225.Google Scholar
Mancini, E. A., and Tew, B. H. 1991. Relationships of Paleogene stage and planktonic foraminiferal zone boundaries to lithostratigraphic and allostratigraphic contacts in the eastern Gulf Coast Plain. Journal of Foraminiferal Research 21:4866.Google Scholar
Mancini, E. A., and Tew, B. H. 1995. Geochronology, biostratigraphy and sequence stratigraphy of a marginal marine to marine shelf stratigraphic succession: Upper Palaeocene and Lower Eocene, Wilcox Group, Eastern Gulf Coastal Plain, U.S.A. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM (Society for Sedimentary Geology) Special Publication. 54:281293.Google Scholar
Mander, L., Kürschner, W. M., and McElwain, J. C. 2010. An explanation for conflicting records of Triassic–Jurassic plant diversity. Proceedings of the National Academy of Sciences USA. 107:1535115356.Google Scholar
Mayle, F. E., Burbridge, R., and Killeen, T. J. 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290:22912294.Google Scholar
Middleton, M., and Luppens, J. A. 1995. Geology and depositional setting of the lower Calvert Bluff Formation (Wilcox Group) in the Calvert Mine area, east-central Texas. In Warwick, P. D., and Crowley, S. S., eds. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas.U.S. Geological Survey Open-File Report 95-595, Chapter 4. http://pubs.usgs.gov/of/1995/of95-595/CHPT4.htm.Google Scholar
Miller, A. I., Aberhan, M., Buick, D. P., Bulinski, K. V., Ferguson, C. A., Hendy, A. J. W., and Kiessling, W. 2009. Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35:612630.Google Scholar
Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89107.Google Scholar
Munoz, S. E., and Gajewski, K. 2010. Distinguishing prehistoric human influence on late-Holocene forests in southern Ontario, Canada. Holocene 20:967981.Google Scholar
Nakashizuka, T. 2001. Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution 16:205210.Google Scholar
Nekola, J. C., and White, P. S. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26:867878.Google Scholar
Nichols, D. J. 1995. The role of palynology in paleoecological analyses of Tertiary coals. International Journal of Coal Geology 28:139159.Google Scholar
Nichols, D. J., and Pocknall, D. T. 1994. Relationships of palynofacies to coal-depositional environments in the upper Paleocene of the Gulf Coast Basin, Texas, and the Powder River Basin, Montana and Wyoming. Pp. 217237 in Traverse, A., ed. Sedimentation of organic particles. Cambridge University Press, Cambridge.Google Scholar
Nichols, D. J., and Traverse, A. 1971. Palynology, petrology, and depositional environments of some early Tertiary lignites in Texas. Geoscience and Man 3:3748.Google Scholar
Odgaard, B. V. 1999. Fossil pollen as a record of past biodiversity. Journal of Biogeography 26:717.Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. 2010. vegan: Community Ecology Package. R package, Version 1.17–4. http://cran.r-project.org/web/packages/vegan/index.html.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E. 2001a. Evaluating taxonomic turnover: Pennsylvanian–Permian brachiopods and bivalves of the North American midcontinent. Paleobiology 27:646668.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E. 2001b. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian-Permian midcontinent. Palaios 16:444460.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.Google Scholar
Pitman, N. C. A., Terborgh, J., Silman, M. R., and Nuez, P. 1999. Tree species distributions in an upper Amazonian forest. Ecology 80:26512661.Google Scholar
Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Nunez, P., Neill, D. A., Ceron, C. E., Palacios, W. A., and Aulestia, M. 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:21012117.Google Scholar
Pitman, N. C. A., Mogollon, H., Davila, N., Rios, M., Garcia-Villacorta, R., Guevara, J., Baker, T. R., Monteagudo, A., Phillips, O. L., Vasquez-Martinez, R., Ahuite, M., Aulestia, M., Cardenas, D., Ceron, C. E., Loizeau, P. A., Neill, D. A., Percy, N. V., Palacios, W. A., Spichiger, R., and Valderrama, E. 2008. Tree community change across 700 km of lowland Amazonian forest from the Andean foothills to Brazil. Biotropica 40:525535.Google Scholar
Qian, H., and Ricklefs, R. E. 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters 10:737744.Google Scholar
Qian, H., Ricklefs, R. E., and White, P. S. 2005. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters 8:1522.Google Scholar
Qian, H., White, P. S., and Song, J. S. 2007. Effects of regional vs. ecological factors on plant species richness: an intercontinental analysis. Ecology 88:14401453.Google Scholar
Qian, H., Badgley, C., and Fox, D. L. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography 18:111122.Google Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing, Version 2.11.1. R Foundation for Statistical Computing, Vienna.Google Scholar
Rhodes, G. M., Ali, J. R., Hailwood, E. A., King, C., and Gibson, T. G. 1999. Magnetostratigraphic correlation of Paleogene sequences from northwest Europe and North America. Geology 28:927930.Google Scholar
Rodriguez, P., and Arita, H. T. 2004. Beta diversity and latitude in North American mammals: testing the hypothesis of covariation. Ecography 27:547556.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
Shi, G. R. 1993. Multivariate data analysis in palaeoecology and palaeobiology—a review. Palaeogeography, Palaeoclimatology, Palaeoecology 105:199234.Google Scholar
Shibata, M., Masaki, T., Tanaka, H., Niiyama, K., Iida, S., Abe, S., and Nakashizuka, T. 2010. Effects of abiotic and biotic factors and stochasticity on tree regeneration in a temperate forest community. Ecoscience 17:137145.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman, San Francisco.Google Scholar
Soininen, J., McDonald, R., and Hillebrand, H. 2007. The distance decay of similarity in ecological communities. Ecography 30:312.Google Scholar
Springer, D. A., and Bambach, R. K. 1985. Gradient versus cluster-analysis of fossil assemblages: a comparison from the Ordovician of southwestern Virginia. Lethaia 18:181198.Google Scholar
Srivastava, D. S. 1999. Using local-regional richness plots to test for species saturation: pitfalls and potentials. Journal of Animal Ecology 68:116.Google Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240256.Google Scholar
Sugita, S. 1993. A model of pollen source area for an entire lake surface. Quaternary Research 39:239244.Google Scholar
Summerville, K. S., and Crist, T. O. 2005. Temporal patterns of species accumulation in a survey of Lepidoptera in a beech-maple forest. Biodiversity and Conservation 14:33933406.Google Scholar
Summerville, K. S., Boulware, M. J., Veech, J. A., and Crist, T. O. 2003a. Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America. Conservation Biology 17:10451057.Google Scholar
Summerville, K. S., Crist, T. O., Kahn, J. K., and Gering, J. C. 2003b. Community structure of arboreal caterpillars within and among four tree species of the eastern deciduous forest. Ecological Entomology 28:747757.Google Scholar
Summerville, K. S., Wilson, T. D., Veech, J. A., and Crist, T. O. 2006. Do body size and diet breadth affect partitioning of species diversity? A test with forest Lepidoptera. Diversity and Distributions 12:9199.Google Scholar
ter Braak, C. J. F. 1995. Ordination. Pp. 91173 in Jongman, R. H. G., ter Braak, C. J. F., and van Tongeren, O. F. R., eds. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.Google Scholar
Thompson, D. E. 1995. Stratigraphic framework and lignite occurrence in the Paleocene of the Ackerman area. Mississippi Geology 16:4959.Google Scholar
Traverse, A. 1988. Paleopalynology. Unwin Hyman, Boston.Google Scholar
Tschudy, R. H. 1973a. Complexiopollis pollen lineage in Mississippi embayment rocks. U.S. Geological Survey Professional Paper 743-C:C1C15.Google Scholar
Tschudy, R. H. 1973b. Stratigraphic distribution of significant Eocene palynomorphs of the Mississippi embayment. U.S. Geological Survey Professional Paper 743-B:B1B21.Google Scholar
Tschudy, R. H. 1975. Normapolles pollen from the Mississippi embayment. U.S. Geological Survey Professional Paper 865:142.Google Scholar
van Tongeren, O. F. R. 1995. Cluster analysis. Pp. 174212 in Jongman, R. H. G., ter Braak, C. J. F., and van Tongeren, O. F. R., eds. Data analysis in community and landscape ecology. Cambridge University Press, Cambridge.Google Scholar
Veech, J. A., and Crist, T. O. 2007. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16:650656.Google Scholar
Veech, J. A., Summerville, K. S., Crist, T. O., and Gering, J. C. 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:39.Google Scholar
Vellend, M. 2001. Do commonly used indices of beta-diversity measure species turnover? Journal of Vegetation Science 12:545552.Google Scholar
Wagner, H. H., Wildi, O., and Ewald, K. C. 2000. Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landscape Ecology 15:219227.Google Scholar
Warwick, P. D., Aubourg, C. E., Suitt, S. E., Podwysocki, S. M., and Schultz, A. C. 2002. Preliminary evaluation of the coal resources for part of the Wilcox Group (Paleocene through Eocene), central Texas. U.S. Geological Survey Open-File Report 02-359:183.Google Scholar
White, E. P., Ernest, S. K. M., Adler, P. B., Hurlbert, A. H., and Lyons, S. K. 2010. Integrating spatial and temporal approaches to understanding species richness. Philosophical Transactions of the Royal Society of London B 365:36333643.Google Scholar
Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:280338.Google Scholar
Wilf, P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112:292307.Google Scholar
Wilf, P., Cuneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122125.Google Scholar
Williams, J. W., Webb, T., Richard, P. H., and Newby, P. 2000. Late Quaternary biomes of Canada and the eastern United States. Journal of Biogeography 27:585607.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Scientist 66:694703.Google Scholar
Wolfe, J. A., and Dilcher, D. L. 2000. Late Paleocene through Middle Eocene climates in lowland North America. GFF 122:184185.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686692.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.Google Scholar
Zhang, C., Zhao, X., and von Gadow, K. 2010. Partitioning temperate plant community structure at different scales. Acta Oecologica 36:306313.Google Scholar