Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T13:14:33.617Z Has data issue: false hasContentIssue false

Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate causes of the end-Triassic mass extinction

Published online by Cambridge University Press:  08 April 2016

Ádám T. Kocsis
Affiliation:
MTA-MTM-ELTE Research Group for Paleontology and Department of Physical and Applied Geology, Eötvös University, Pázmány Péter sétány 1/C, Budapest, H-1117 Hungary. E-mail: [email protected], [email protected]
Wolfgang Kiessling
Affiliation:
GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Loewenichstrae 28, D-91054 Erlangen, Germany. E-mail: [email protected]
József Pálfy
Affiliation:
MTA-MTM-ELTE Research Group for Paleontology and Department of Physical and Applied Geology, Eötvös University, Pázmány Péter sétány 1/C, Budapest, H-1117 Hungary. E-mail: [email protected], [email protected]

Abstract

Within a ∼60-Myr interval in the Late Triassic to Early Jurassic, a major mass extinction took place at the end of Triassic, and several biotic and environmental events of lesser magnitude have been recognized. Climate warming, ocean acidification, and a biocalcification crisis figure prominently in scenarios for the end-Triassic event and have been also suggested for the early Toarcian. Radiolarians, as the most abundant silica-secreting marine microfossils of the time, provide a control group against marine calcareous taxa in testing selectivity and responses to changing environmental parameters. We analyzed the origination and extinction rates of radiolarians, using data from the Paleobiology Database and employing sampling standardization, the recently developed gap-filler equations and an improved stratigraphic resolution at the substage level. The major end-Triassic event is well-supported by a late Rhaetian peak in extinction rates. Because calcifying and siliceous organisms appear similarly affected, we consider global warming a more likely proximate trigger of the extinctions than ocean acidification. The previously reported smaller events of radiolarian turnover fail to register above background levels in our analyses. The apparent early Norian extinction peak is not significant compared to the long-term trajectory, and is probably a sampling artifact. The Toarcian Oceanic Anoxic Event, previously also thought to have caused a significant radiolarian turnover, did not significantly affect the group. Radiolarian diversity history appears unique and complexly forced, as its trajectory parallels major calcareous fossil groups at some events and deviates at others.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., and Baumiller, T. K. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.CrossRefGoogle Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:11,53611,542.Google Scholar
Alroy, J. 2010a. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.Google Scholar
Alroy, J. 2010b. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Alroy, J. 2010c. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. InAlroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 14:5580.Google Scholar
Alroy, J. 2014. Accurate and precise estimates of origination and extinction rates. Paleobiology 40:374397.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivanyi, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Anderson, O. R., Bennett, P., and Bryan, M. 1989. Experimental and observational studies of radiolarian physiological ecology. 3. Effects of temperature, salinity and light intensity on the growth and survival of Spongaster tetras tetras maintained in laboratory culture. Marine Micropaleontology 14:275282.Google Scholar
Anderson, O. R., Bryan, M., and Bennett, P. 1990. Experimental and observational studies of radiolarian physiological ecology. 4. Factors determining the distribution and survival of Didymocyrtis tetrathalamus tetrathalamus with implications for paleoecological interpretations. Marine Micropaleontology 16:155167.Google Scholar
Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B., and Thrilwall, M. F. 2003. Paleoceanographic changes of the Late Pliensbachian–Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters 212:302320.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Beerling, D. J., and Berner, R. A. 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical Cycles 16. doi: 10.1029/2001GB001637.Google Scholar
Bown, P., Lees, J., and Young, J. 2004. Calcareous nannoplankton evolution and diversity through time. Pp. 481508inThierstein, H., and Young, J., eds. Coccolithophores. Springer, Berlin.Google Scholar
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference. Springer, New York.Google Scholar
Carter, E. S. 1993. Biochronology and paleontology of uppermost Triassic (Rhaetian) radiolarians, Queen Charlotte Islands, British Columbia, Canada. Mémoires de Géologie (Lausanne) 11:1175.Google Scholar
Carter, E. S., and Hori, R. S. 2005. Global correlation of the radiolarian faunal change across the Triassic–Jurassic boundary. Canadian Journal of Earth Sciences 42:777790.CrossRefGoogle Scholar
Carter, E. S., Goričan, Š., Guex, J., O'Dogherty, L., De Wever, P., Dumitrica, P., Hori, R. S., Matsuoka, A., and Whalen, P. A. 2010. Global radiolarian zonation for the Pliensbachian, Toarcian and Aalenian. Palaeogeography, Palaeoclimatology, Palaeoecology 297:401419.Google Scholar
Coradin, T., and Lopez, P. J. 2003. Biogenic silica patterning: simple chemistry or subtle biology. ChemBioChem 3:19.Google Scholar
De Wever, P., Dumitrica, P., Caulet, J. P., and Caridroit, M. 2001. Radiolarians in the sedimentary record. Gordon and Breach, Amsterdam.Google Scholar
De Wever, P., O'Dogherty, L., and Goričan, Š. 2006. The plankton turnover at the Permo-Triassic boundary, emphasis on radiolarians. Eclogae Geolocicae Helvetiae 99 (Supp. 1):S49S62.Google Scholar
Erbacher, J., and Thurow, J. 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Marine Micropaleontology 30 (1–3):139158.CrossRefGoogle Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. InErwin, D. H. and Wing, Scott L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):74102.CrossRefGoogle Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Goričan, Š., Carter, E. S., Dumitrica, P., Whalen, P. A., Hori, R. S., De Wever, P., O'Dogherty, L., Matsuoka, A., and Guex, J. 2006. Catalogue and systematics of Pliensbachian, Toarcian and Aalenian radiolarian genera and species. Založba ZRC, Ljubljana.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. M. 2012. The geologic time scale 2012. Elsevier, Boston.Google Scholar
Greene, S. E., Martindale, R. C., Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A., and Berelson, W. M. 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Science Reviews 113:7293.Google Scholar
Hautmann, M., Benton, M. J., and Tomašových, A. 2008. Catastrophic ocean acidification at the Triassic-Jurassic boundary. Neues Jahrbuch für Geologie und Paläontologie 249:119127.Google Scholar
Hori, R. S. 1997. The Toarcian radiolarian event in bedded cherts from southwestern Japan. Marine Micropaleontology 30:159169.Google Scholar
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto, T. M. J., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B. 2012. The geological record of ocean acidification. Science 335:10581063.CrossRefGoogle ScholarPubMed
Jenkyns, H. C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11(3):Q03004. doi: 10.1029/2009GC002788.CrossRefGoogle Scholar
Kiessling, W. 1999. Late Jurassic radiolarians from the Antarctic Peninsula. Micropaleontology 45 (Suppl. 1):196.Google Scholar
Kiessling, W. 2005. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410413.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.Google Scholar
Kiessling, W., and Danelian, T. 2011. Trajectories of Late Permian–Jurassic radiolarian extinction rates: no evidence for an end-Triassic mass extinction. Fossil Record 14:95101.CrossRefGoogle Scholar
Kiessling, W., and Simpson, C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.Google Scholar
Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P. J. 2007. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 224:201222.Google Scholar
Li, W., Gao, K., and Beardall, J. 2012. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. PLoS ONE 7 (12):e51590. doi: 10.1371/journal.pone.0051590.Google Scholar
Longridge, L. M., Carter, E. S., Smith, P. L., and Tipper, H. W. 2007. Early Hettangian ammonites and radiolarians from the Queen Charlotte Islands, British Columbia and their bearing on the definition of the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244:142169.Google Scholar
Lucas, S. G. 2002. Introduction. Pp. 116inLucas, S. G., ed. The Triassic timescale. Geological Society, London.Google Scholar
Matsuoka, A. 2007. Living radiolarian feeding mechanisms: new light on past marine ecosystems. Swiss Journal of Geosciences 100:273279.Google Scholar
Matsuoka, A., and Anderson, O. R. 1992. Experimental and observational studies of radiolarian physiological ecology. 5. Temperature and salinity tolerance of Dictyocoryne truncatum. Marine Micropaleontology 19:299313.Google Scholar
McElwain, J. C., Beerling, D. J., and Woodward, F. I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:13861390.CrossRefGoogle ScholarPubMed
McKinney, M. L., and Oyen, C. W. 1989. Causation and nonrandomness in biological and geological time series; temperature as a proximal control of extinction and diversity. Palaios 4:315.Google Scholar
O'Dogherty, L., Carter, E. S., Dumitrica, P., Goričan, Š., De Wever, P., Hungerbühler, A., Bandini, A. N., and Takemura, A. 2009a. Catalogue of Mesozoic radiolarian genera, Part 1. Triassic. Geodiversitas 31:213270.Google Scholar
O'Dogherty, L., Carter, E. S., Dumitrica, P., Goričan, Š., De Wever, P., Bandini, A. N., Baumgartner, P. O., and Matsuoka, A. 2009b. Catalogue of Mesozoic radiolarian genera, Part 2. Jurassic–Cretaceous. Geodiversitas 31:271356.Google Scholar
O'Dogherty, L., Carter, E. S., Goričan, Š., and Dumitrica, P. 2010. Triassic radiolarian biostratigraphy. Pp. 163200inLucas, S. G., ed. The Triassic timescale. Geological Society, London.Google Scholar
Ogane, K., Tuji, A., Suzuki, N., Kurihara, T., and Matsuoka, A. 2009. First application of PDMPO to examine silicification in polycystine Radiolaria. Plankton and Benthos Research 4:8994.Google Scholar
Pálfy, J. 2003. Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic mass extinction. American Geophysical Union, Geophysical Monograph Series 136:255267.Google Scholar
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637669.CrossRefGoogle Scholar
Pike, N. 2011. Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution 2:278282.Google Scholar
R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.Google Scholar
Renaudie, J., and Lazarus, D. B. 2013. On the accuracy of paleodiversity reconstructions: a case study in Antarctic Neogene radiolarians. Paleobiology 39:491509.Google Scholar
Ruhl, M., and Kürschner, W. M. 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition. Geology 39:431434.Google Scholar
Sadler, P. M. 2004. Quantitative biostratigraphy—achieving finer resolution in global correlation. Annual Review of Earth and Planetary Sciences 32:187213.CrossRefGoogle Scholar
Sepkoski, J. J. J. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Steinthorsdottir, M., Jeram, A. J., and McElwain, J. C. 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 308:418432.Google Scholar
Tatters, A. O., Roleda, M. Y., Schnetzer, A., Fu, F., Hurd, C. L., Boyd, P. W., Caron, D. A., Lie, A. A. Y., Hoffmann, L. J., and Hutchins, D. A. 2013. Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society of London B 368. doi: 10.1098/rstb.2012.0437.Google Scholar