Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T02:32:11.626Z Has data issue: false hasContentIssue false

Quantifying successional change and ecological similarity among Cretaceous and modern cold-seep faunas

Published online by Cambridge University Press:  27 December 2018

Joshua D. Laird
Affiliation:
Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, U.S.A. E-mail: [email protected].
Christina L. Belanger
Affiliation:
Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, U.S.A. E-mail: [email protected].

Abstract

Accurately recognizing analogues between fossil and modern ecosystems allows paleoecologists to more fully interpret fossil assemblages and modern ecologists to leverage the fossil record to address long-term ecological and environmental changes. However, this becomes increasingly difficult as taxonomic turnover increases the dissimilarity between ecosystems. Here we use a guild-based approach to compare the ecological similarity of Cretaceous cold-seep assemblages preserved in the Pierre Shale surrounding the Black Hills and modern cold-seep assemblages from five previously recognized biofacies. We modify modern assemblage data to include only those taxa with fossilizable hard parts greater than 5 mm in length to make these modern data sets more comparable to potential fossil analogues. We find that while the Black Hills assemblages are more similar in ecological guild composition to the modern thyasirid biofacies, subsets share similarities in ecological structure to the lucinid and mussel-bed biofacies. The fossil seep assemblages are also more similar to one another than are modern assemblages belonging to the same biofacies, despite greater geographic and temporal dissimilarity among the fossil samples. Furthermore, guild-level ordination analyses show a secondary faunal gradient that reflects community succession in the hard substrate–dominated modern assemblages and reveals a parallel faunal gradient in the soft sediment–dominated Cretaceous assemblages, consistent with a gradient in the influence of seep fluids on the faunas. Thus, while the Black Hills assemblages are quite homogeneous in their composition, they capture ecological variation similar to successional patterns in modern seep systems.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77840, U.S.A.

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.s8s72md

References

Literature Cited

Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. In Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Topics in Geobiology 3:719746.Google Scholar
Beauchamp, B., and Savard, M.. 1992. Cretaceous chemosynthetic carbonate mounds in the Canadian arctic. Palaios 7:434450.Google Scholar
Beck, J., Holloway, J. D., and Schwanghart, W.. 2013. Undersampling and the measurement of beta diversity. Methods in Ecology and Evolution 4:370382.Google Scholar
Bergquist, D. C., Ward, T., Cordes, E. E., McNelis, T., Howlett, S., Kosoff, R., Hourdez, S., Carney, R., and Fisher, C. R.. 2003. Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. Journal of Experimental Marine Biology and Ecology 289:197222.Google Scholar
Bergquist, D. C., Fleckenstein, C., Knisel, J., Begley, B., MacDonald, I. R., and Fisher, C. R.. 2005. Variations in seep mussel bed communities along physical and chemical environmental gradients. Marine Ecology Progress Series 293:99108.Google Scholar
Berrocoso, A. J., MacLeod, K. G., Calvert, S. E., and Elorza, J.. 2008. Bottom water anoxia, inoceramid colonization, and benthopelagic coupling during black shale deposition on the Demerara Rise (Late Cretaceous western tropical North Atlantic). Paleoceanography and Paleoclimatology 23. doi: 10.1029/2007PA001545.Google Scholar
Bishop, G. A., and Williams, A. B.. 2000. Fossil crabs from Tepee Buttes, submarine seeps of the Late Cretaceous Pierre Shale, South Dakota and Colorado, U.S.A. Journal of Crustacean Biology 20:286300.Google Scholar
Boetius, A., and Wenzhöfer, F.. 2013. Seafloor oxygen consumption fueled by methane from cold seeps. Nature Geoscience 6:725734.Google Scholar
Bulinski, K. V. 2007. Analysis of sample-level properties along a paleoenvironmental gradient: the behavior of evenness as a function of sample size. Palaeogeography, Palaeoclimatology, Palaeoecology 253:490508.Google Scholar
Bush, A. M., and Novack-Gottshall, P. M.. 2012. Modeling the ecological-functional diversification of marine Metazoa on geologic time scales. Biological Letters 8:151155.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M.. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.Google Scholar
Callender, W. R. 1992. Recognition of deep-water benthic assemblages in the fossil record: taphonomy and community characteristics of Louisiana continental slope petroleum seep assemblages. Texas A&M University, College Station, Tex.Google Scholar
Callender, W. R., and Powell, E. N.. 1997. Autochthonous death assemblages from chemoautotrophic communities at petroleum seeps: paleoproduction, energy flow, and implications for the fossil record. Historical Biology 12:165198.Google Scholar
Callender, W. R., and Powell, E. N.. 1999. Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? International Journal of Earth Sciences 88:377391.Google Scholar
Callender, W. R., and Powell, E. N.. 2000. Long-term history of chemoautotrophic clam-dominated faunas of petroleum seeps in Northwestern Gulf of Mexico. Facies 43:177204.Google Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 32:362407.Google Scholar
Campbell, K. A., and Bottjer, D. J.. 1993. Fossil cold seeps (Jurassic–Pliocene) along the convergent margin of western North America. National Geographic Research and Exploration 9:326343.Google Scholar
Campbell, K. A., Farmer, J. D., and Des Marais, D.. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:6394.Google Scholar
Cobban, W. A., Walaszczyk, I., Obradovich, J. D., and McKinney, K. C.. 2006. A USGS zonal table for the Upper Cretaceous Middle Cenomanian–Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. U.S. Geological Survey Open File Report 2006–1250.Google Scholar
Cochran, J. K., Landman, N. H., Larson, N. L., Meehan, K. C., Garb, M., and Brezina, J.. 2015. Geochemical evidence (C and Sr isotopes) for methane seeps as ammonite habitats in the Late Cretaceous (Campanian) Western Interior Seaway. Swiss Journal of Palaeontology 134:153165.Google Scholar
Conti, S., and Fontana, D.. 1999. Miocene chemoherms of the northern Apennines (Italy). Geology 27:927930.Google Scholar
Cordes, E. E., Hourdez, S., Predmore, B. L., Redding, M. L., and Fisher, C. R.. 2005. Succession of hydrocarbon seep communities associated with the long-lived foundation species Lamellibrachia luymesi. Marine Ecology Progress Series 305:1729.Google Scholar
Cordes, E. E., Bergquist, D. C., Predmore, B. L., Jones, C., Deines, P., Telesnicki, G., and Fisher, C. R.. 2006. Alternate unstable states: convergent paths of succession in hydrocarbon-seep tubeworm-associated communities. Journal of Experimental Marine Biology and Ecology 339:159176.Google Scholar
Cordes, E. E., Bergquist, D. C., and Fisher, C. R.. 2009. Macro-ecology of Gulf of Mexico cold seeps. Annual Review of Marine Science 1:143168.Google Scholar
Cordes, E. E., Becker, E. L., Hourdez, S., and Fisher, C. R.. 2010. Influence of foundation species, depth, and location on diversity and community composition at Gulf of Mexico lower-slope cold seeps. Deep-Sea Research, part II (Topical Studies in Oceanography) 57:18701881.Google Scholar
Costello, M. J., Emblow, C. S., and White, R.. 2001. European Register of Marine Species. A check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines naturels 50. Muséum National d'Histoire Naturelle, Paris.Google Scholar
Dando, P. R. 2010. Biological communities at marine shallow-water vent and seep sites. In Kiel, S., ed. The vent and seep biota. Topics in Geobiology 33:333378.Google Scholar
Dando, P. R., Austen, M. C., Burke, R. A. Jr., Kendall, M. A., Kennicutt, M. C. II, Judd, A. G., Moore, D. C., O'Hara, S. C. M., Schmalijohann, R., and Southward, A. J.. 1991. Ecology of a North Sea pockmark with an active methane seep. Marine Ecology Progress Series 70:4963.Google Scholar
Darroch, S. A. F., and Wagner, P. J.. 2015. Response of beta diversity to pulses of Ordovician–Silurian mass extinction. Ecology 96:532549.Google Scholar
Decker, C., Morineaux, M., Van Gaever, S., Caprais, J.-C., Lichtschlag, A., Gautherier, O., Andersen, A. C., and Olu, K.. 2012. Habitat heterogeneity influences cold-seep macrofaunal communities within and among seeps along the Norwegian margin. Part 1: macrofaunal community structure. Marine Ecology 33:205230.Google Scholar
de Kluijver, M. J., and Ingalsuo, S. S., 2018. Macrobenthos of the North Sea—Echinodermata. Marine Species Identification Portal. http://species-identification.org, accessed 30 January 2018.Google Scholar
de Kluijver, M. J., Ingalsuo, S. S., and de Bruyne, R. H.. 2018. Mollusca of the North Sea. Marine Species Identification Portal. http://species-identification.org, accessed 30 January 2018.Google Scholar
Droser, M. L., Bottjer, B. J., Sheehan, P. M., and MeGhee, G. R. Jr. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.Google Scholar
Foster, W. J., and Twitchett, R. J.. 2014. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nature Geoscience 7:233238.Google Scholar
Gilbert, G. K., and Gulliver, F. P.. 1894. Teepee Buttes. Geological Society of America Bulletin 6:333342.Google Scholar
Hammer, Ø., and Harper, D.. 2006. Paleontological data analysis. Blackwell, Malden, Mass.Google Scholar
Hammer, Ø., Nakrem, H. A., Little, C. T. S., Hryniewicz, K., Sandy, M. R., Hurum, J. H., Drunkenmiller, P., Knutsen, E. M., and Høyberget, M.. 2011. Hydrocarbon seeps from close to the Jurassic–Cretaceous boundary, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology 306:1526.Google Scholar
Handle, K. C. 2014. Paleoecology of late Cretaceous methane cold seeps of the Pierre Shale, South Dakota. City University of New York, New York.Google Scholar
Hay, W. W., Eicher, D. L., and Diner, R.. 1993. Physical oceanography and water masses in the Cretaceous Western Interior Seaway. In Caldwell, W. G. E. and Kauffman, E. G., eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper 39:297318.Google Scholar
Hickman, C. E. 1984. Composition, structure, ecology and evolution of six Cenozoic deep-water mollusk communities. Journal of Paleontology 58:12151234.Google Scholar
Hikida, Y., Suzuki, S., Togo, Y., and Ijiri, A.. 2003. An exceptionally well-preserved fossil seep community from the Cretaceous Yezo Group in the Nakagawa area, Hokkaido, northern Japan. Paleontological Research 7:329342.Google Scholar
Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boury-Esnault, N., Brandão, S. N., Costello, M. J., et al. 2018. World Register of Marine Species. http://www.marinespecies.org at VLIZ, accessed 30 January 2018.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jeletzky, J. A. 1970. Marine Cretaceous biotic provinces and paleogeography of western and arctic Canada: illustrated by a detailed study of ammonites. Geological Survey of Canada Paper 70–22.Google Scholar
Jenkins, R. G., Kaim, A., and Hikida, Y.. 2007a. Antiquity of the substrate choice among acmaeid limpets from Late Cretaceous chemosynthesis-based communities. Acta Palaeontologica Polonica 52:369373.Google Scholar
Jenkins, R. G., Kaim, A. J., Hikida, Y., and Tanabe, K.. 2007b. Methane-flux-dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblages from the Nakagawa area of Hokkaido, Japan. Geobiology 5:127139.Google Scholar
Jewell, P. W. 1993. Water-column stability, residence times, and anoxia in the Cretaceous North American seaway. Geology 21:579582.Google Scholar
Kauffman, E. G., Sageman, B. B., Kirkland, J. I., and Elder, W. P.. 1993. Molluscan biostratigraphy of the Cretaceous Western Interior Basin, North America. In Caldwell, W. G. E. and Kauffman, E. G., eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper 39:397434.Google Scholar
Kauffman, E. G., Arthur, M. A., Howe, B., and Scholle, P. A.. 1996. Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior Seaway, U.S.A. Geology 24:799802.Google Scholar
Kauffman, E. G., Harries, P. J., Meyer, C., Villamil, T., Arango, C., and Jaecks, G.. 2007. Paleoecology of giant inoceramidae (Platyceramus) on a Santonian (Cretaceous) seafloor in Colorado. Journal of Paleontology 81:6481.Google Scholar
Kase, T., and Ishikawa, M.. 2003. Mystery of naticid predation history solved: evidence from a “living fossil” species. Geology 31:403406.Google Scholar
Kidwell, S. M. 2013. Time-averaging and fidelity of modern death assemblages: building a taphonomic foundation for conservation paleobiology. Palaeontology 56:487522.Google Scholar
Kiel, S. 2010a. The fossil record of vent and seep molluscs. In Kiel, S., ed. The vent and seep biota. Topics in Geobiology 33:255277.Google Scholar
Kiel, S. 2010b. On the potential generality of depth-related ecologic structure in cold-seep communities: evidence from Cenozoic and Mesozoic examples. Palaeogeography, Palaeoclimatology, Palaeoecology 295:245257.Google Scholar
Kiel, S. 2015. Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems? Proceedings of the Royal Society of London B 282. doi: 10.1098/rspb.2014.2908.Google Scholar
Kiel, S., Wiese, F., and Titus, A. T.. 2012. Shallow-water methane-seep faunas in the Cenomanian Western Interior Seaway: no evidence for onshore-offshore adaptation to deep-sea vents. Geology 40:839842.Google Scholar
Knight, R. I., Morris, N. J., Todd, J. A., Howard, L. E., and Ball, A. D.. 2013. Exceptional preservation of a novel gill grade in large Cretaceous inoceramids: systematic and palaeobiological implications. Palaeontology 57. doi: 10.1111/pala.12046.Google Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J.. 2003. Measuring beta diversity for presence-absence data. Journal of Animal Ecology 72:367382.Google Scholar
Kraeuter, J. N. 2009. Scaphopoda (Mollusca) of the Gulf of Mexico. Pp. 745749 in Felder, D. L. and Camp, D. K., eds. Gulf of Mexico origin, waters, and biota, Vol. 1. Biodiversity. Texas A&M University Press, College Station, Tex.Google Scholar
Krauss, F. F., Clark, J., Sayegh, S. G., and Perez, R. J.. 2009. Tube worm fossils or relic methane expulsing conduits? Palaios 24:4150.Google Scholar
Kruta, I., Landman, N. H., Rouget, I., Cecca, F., and Larson, N. L.. 2010. The jaw apparatus of the Late Cretaceous ammonite Didymoceras. Journal of Paleontology 84:556560.Google Scholar
Kruta, I., Landman, N., Rouget, I., Cecca, F., and Tafforeau, P.. 2011. The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:7072.Google Scholar
Landman, N. H., Tsujita, C. J., Cobban, W. A., Larson, N. L., Tanabe, K., and Flemming, R. L.. 2006. Jaws of Late Cretaceous placenticeratid ammonites: how preservation affects the interpretation of morphology. American Museum Novitates 3500.Google Scholar
Landman, N. H., Cobban, W. A., and Larson, N. L.. 2012a. Mode of life and habitat of scaphitid ammonites. Geobios 45:8798.Google Scholar
Landman, N. H., Cochran, J. K., Larson, N. L., Brezina, J., Garb, M. P., and Harries, P. J.. 2012b. Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology 40:507510.Google Scholar
Landman, N. H., Kennedy, W. J., Cobban, W. A., Larson, N. L., and Jorgensen, S. D.. 2013. A new species of Hoploscaphites (Ammonoidea: Ancyloceratina) from cold methane seeps in the Upper Cretaceous of the U.S. Western Interior. American Museum Novitates 3781.Google Scholar
Landman, N. H., Cochran, J. K., Slovacek, M., Larson, N. L., Garb, M. P., Brezina, J., and Witts, J. D.. 2018. Isotope sclerochronology of ammonites (Baculites compressus) from methane seep and non-seep sites in the Late Cretaceous Western Interior Seaway, USA: implications for ammonite habitat and mode of life. American Journal of Science 318:603639.Google Scholar
Larson, N. L., Jorgensen, S. D., Farrar, R. A., and Larson, P. L.. 1997. Ammonites and the other cephalopods of the Pierre Seaway: identification guide. Geoscience Press, Tucson, Ariz.Google Scholar
Larson, N. L., Brezina, J., Landman, N. H., Garb, M. P., and Handle, K. C.. 2013. Hydrocarbon seeps: unique habitats that preserved the diversity of fauna in the Late Cretaceous Western Interior Seaway. Wyoming Geological Society Handbook. Wyoming Geological Society, Caspar, Wyo.Google Scholar
Levin, L. A. 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: An Annual Review 43:146.Google Scholar
Levin, L. A., Gage, J. D., Martin, C., and Lamont, P. A.. 2000a. Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Research, part II (Topical Studies in Oceanography) 47:189226.Google Scholar
Levin, L. A., James, D. W., Martin, C. M., Rathburn, A. E., Harris, L. H., and Michener, R. H.. 2000b. Do methane seeps support distinct macrofaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Marine Ecology Progress Series 208:2139.Google Scholar
Levin, L. A., Mendoza, G. F., Gonzales, J. P., Thurber, A. R., and Cordes, E. E.. 2010. Diversity of bathyal macrofauna on the northeastern Pacific margin: the influence of methane seeps and oxygen minimum zones. Marine Ecology 31:94110.Google Scholar
Levin, L. A., Baco, A. R., Bowden, D. A., Colaco, A., Cordes, E. E., Cunha, M. R., Demopoulos, A. W. J., et al. 2016. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Frontiers in Marine Science. doi: 10.3389/fmars.2016.00072.Google Scholar
Little, C. T. S., Birgel, D., Boyce, A. J., Crame, J. A., Francis, J. E., Kiel, S., Peckman, J., Pirrie, D., Rollinson, G. K., and Witts, J. D.. 2015. Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basing, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 418:313–228.Google Scholar
Lockwood, R. 2003. Abundance not linked to survival across the end-Cretaceous mass extinction: patterns in North American bivalves. Proceedings of the National Academy of Sciences USA 100:24782482.Google Scholar
Lowery, C. M., Leckie, R. M., Bryan, R., Elderbak, K., Parker, A., Polyak, D. E., Schmidt, M., Snoeyenbos-West, O., and Sterzinar, E.. 2018. The Late Cretaceous Western Interior Seaway as a model for oxygenation change in epicontinental restricted basins. Earth-Science Reviews 177:545564.Google Scholar
MacArthur, R. H., and Wilson, E. O.. 1963. An equilibrium theory of insular zoogeography. Evolution 17:373387.Google Scholar
MacDonald, I. R., Schroeder, W. W., and Brooks, J. M.. 1995. Chemosynthetic ecosystems studies final report. OCS Study MMS 95-0023. Geochemical and Environmental Research Group, U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, La.Google Scholar
MacLeod, K. G., and Hoppe, K. A.. 1992. Evidence that inoceramid bivalves were benthic and harboured chemosynthetic symbionts. Geology 20:117120.Google Scholar
Majima, R., Nobuhara, T., and Kitazaki, T.. 2005. Review of fossil chemosynthetic assemblages in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology: 227:86123.Google Scholar
McEachran, J. D. 2009. Fishes (Vertebrata: Pisces) of the Gulf of Mexico. Pp. 12231316 in Felder, D. L. and Camp, D. K., eds. Gulf of Mexico origin, waters, and biota, Vol. 1. Biodiversity. Texas A&M University Press, College Station, Tex.Google Scholar
Meehan, K. C., and Landman, N. H.. 2016. Faunal associations in cold-methane seep deposits from the upper Cretaceous Pierre Shale, South Dakota. Palaios 31:291301.Google Scholar
Metz, C. L. 2010. Tectonic controls on the genesis and distribution of Late Cretaceous, Western Interior Basin hydrocarbon-seep mounds (Tepee Buttes) of North America. Journal of Geology 118:201213.Google Scholar
Moretzsohn, F., Sánchez Chávez, J. A., and Tunnell, J. W. Jr. eds. 2015. Gulfbase: resource database for Gulf of Mexico Research. http://www.gulfbase.org, accessed 1 June 2017.Google Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.Google Scholar
Odum, E. P. 1985. Trends expected in stressed ecosystems. BioScience 35:419422.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.. 2015. vegan: community ecology package, R package, Version 2.2–1.Google Scholar
Overpeck, J. T., Webb, T. III, and Prentice, I. C.. 1985. Quantification of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23:87108.Google Scholar
Pawson, D. L., Vance, D. J., Messing, C. G., Solís-Marin, F. A., and Mah, C. L.. 2009. Echinodermata of the Gulf of Mexico. Pp. 11771204 in Felder, D. L. and Camp, D. K., eds. Gulf of Mexico origin, waters, and biota, Vol. 1. Biodiversity. Texas A&M University Press, College Station, Tex.Google Scholar
Powell, E. N., Callender, W. R., and Stanton, R. J. Jr. 1998. Can shallow- and deep-water chemoautrophic and heterotrophic communities be discriminated in the fossil record? Palaeogeography Palaeoclimatology Palaeoecology 144:85114.Google Scholar
Qian, H., and Ricklefs, R. E.. 2012. Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography 21:341351.Google Scholar
Rasband, W. S. 2016. ImageJ. U.S. National Institutes of Health, Bethesda, Md. http://imagej.nih.gov/ij, accessed 30 May 2016.Google Scholar
R Core Team. 2015. R: a language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org, accessed 1 September 2015.Google Scholar
Rosenberg, G., Moretzsohn, F., and García, E. F.. 2009. Gastropoda (Mollusca) of the Gulf of Mexico. Pp. 579699 in Felder, D. L. and Camp, D. K., eds. Gulf of Mexico origin, waters, and biota, Vol. 1, Biodiversity. Texas A&M University Press, College Station, Tex.Google Scholar
Rull, V. 2010. Ecology and paleoecology: two approaches, one objective. Open Journal of Ecology 3:15.Google Scholar
Sassen, R., Roberts, H. H., Aharon, P., Larkin, J., Chinn, E. W., and Carney, R.. 1993. Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope. Organic Geochemistry 20:7789.Google Scholar
Sahling, H., Rickert, D., Lee, R. W., Linke, P., and Suess, E.. 2002. Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series 231:121138.Google Scholar
Sahling, H., Galkin, S. V., Salyuk, A., Greinert, J., Hilmar, F., Piepenburg, D., and Suess, E.. 2003. Depth-related structure and ecological significance of cold-seep communities—a case study from the Sea of Okhotsk. Deep-Sea Research 50:13191409.Google Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J.. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115118.Google Scholar
Shapiro, R., and Fricke, H.. 2002. Tepee Buttes: fossilized methane-seep ecosystems. GSA Field Guides 3:94101.Google Scholar
Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J., Breman, E., Buck, C. E., Ellis, E. C., et al. 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal Ecology 102:256–67.Google Scholar
Thuy, B., Landman, N. H., Larson, N. L., and Numberger-Thuy, L. D.. 2018. Brittle-start mass occurrence on a Late Cretaceous methane seep from South Dakota, USA. Scientific Reports 8:9617.Google Scholar
Todd, J. A. 2001. Introduction to molluscan life habits databases: Neogene Marine Biota of Tropical America. http://porites.geology.uiowa.edu/database/mollusc/mollusclifestyles.htm, accessed 1 June 2017.Google Scholar
Turgeon, D. D., Lyons, W. G., Mikkelsen, P., Rosenberg, G., and Moretzsohn, F.. 2009. Bivalvia (Mollusca) of the Gulf of Mexico. Pp. 711744 In Felder, D. L. and Camp, D. K., eds. Gulf of Mexico origin, waters, and biota, Vol. 1. Biodiversity. Texas A&M University Press, College Station, Tex.Google Scholar
Vrijenhoek, R. C. 2013. On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Research, part II (Topical Studies in Oceanography) 92:189200.Google Scholar
Williams, J. W., and Jackson, S. T.. 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5:475482.Google Scholar
Wright, E. K. 1987. Stratification and paleocirculation of the Late Cretaceous Western Interior Seaway of North America. Geological Society of America Bulletin 99:480490.Google Scholar