Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T18:57:00.994Z Has data issue: false hasContentIssue false

The problem with the Paleozoic

Published online by Cambridge University Press:  14 July 2015

Shanan E. Peters*
Affiliation:
Department of Geological Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109. E-mail: [email protected]

Extract

Unfossiliferous marine sedimentary rocks of Phanerozoic age are known to all field-oriented paleontologists. These troublesome units are often encountered in the field, perhaps cursed roundly for a moment or two, and usually shrugged off in pursuit of the next fossiliferous interval. Paleontologists tend not to discuss barren units, and they rarely publish on the absence of a fauna from what appears to be unaltered marine rock. But aren't barren marine sediments revealing something important about their paleoenvironment and possibly about the paleoenvironments of conformably adjacent fossil-bearing units? Shouldn't paleontologists be just as interested in knowing the locations and ages of unfossiliferous sediments as they are fossiliferous strata?

Type
Matters of the Record
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Algeo, T. J., Heckel, P. H., Maynard, J. B., Blakey, R. C., and Rowe, H. 2007. Modern and ancient epicontinental seas and the superestuarine circulation model of marine anoxia. In Holmden, C. and Pratt, B., eds. Geology of epeiric seas. Geological Association of Canada (in press).Google Scholar
Allison, P. A., and Briggs, D. E. G. 1993. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21:527530.2.3.CO;2>CrossRefGoogle Scholar
Allison, P. A., and Wright, V. P. 2005. Switching off the carbonate factory: a-tidality, stratification and brackish wedges in epeiric seas. Sedimentary Geology 179:175184.CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Baumiller, T. K., and Gahn, F. J. 2004. Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science 305:14531455.CrossRefGoogle ScholarPubMed
Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M., and Wildman, R. A. Jr. 2003. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences 31:105134.CrossRefGoogle Scholar
Boesch, D. F., and Rabalais, N. N. 1991. Effects of hypoxia on continental shelf benthos: comparisons between the New York Bight and the Northern Gulf of Mexico. Pp. 2734 in Tyson, and Pearson, 1991b.CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Bowersox, J. R. 2005. Reassessment of extinction patterns of Pliocene mollusks from California and environmental forcing of extinction in the San Joaquin Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 221:5582.CrossRefGoogle Scholar
Brett, C. E. 1984. Autecology of Silurian pelmatozoan echinoderms. Special Papers in Palaeontology 32:87120.Google Scholar
Brett, C. E. 1999. Wenlockian fossil communities in New York State and adjacent areas paleontology and paleoecology. Pp. 592637 in Boucot, A. J. and Lawson, J. D., eds. Paleocommunities: a case study from the Silurian and Lower Devonian (World and Regional Geology 11). Cambridge University Press, New York.Google Scholar
Brett, C. E., Allison, P. A., Tsujita, C. J., Soldani, D., and Moffat, H. A. 2006. Sedimentology, taphonomy, and paleoecology of meter-scale cycles from the Upper Ordovician of Ontario. Palaios 21:530547.CrossRefGoogle Scholar
Brett, C. E., Kohrs, R. H., and Kirchner, B. 2007. Paleontological event beds from the Upper Ordovician of Ohio and northern Kentucky and the limits of high-resolution stratigraphy. In Holmden, C. and Pratt, B., eds. Geology of epeiric seas. Geological Association of Canada (in press).Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Byers, C. W. 1977. Biofacies patterns in euxinic basins: a general model. In Cook, H. E. and Enos, P., eds. Deep-water carbonate environments: Society of Economic Paleontologists and Mineralogists Special Publication 25:517.CrossRefGoogle Scholar
Chapman, L. J., Kaufman, L. S., Chapman, C. A., and McKenzie, F. E. 1995. Hypoxia tolerance in twelve species of East African cichlids: potential for low oxygen refugia in Lake Victoria. Conservation Biology 9:12741287.CrossRefGoogle ScholarPubMed
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.2.0.CO;2>CrossRefGoogle Scholar
Cherns, L., Wheeley, J. R., and Karis, L. 2006. Tunneling trilobites: habitual infaunalism in an Ordovician carbonate floor. Geology 34:657660.CrossRefGoogle Scholar
Diaz, R. J. 2001. Overview of hypoxia around the world. Environmental Quality 30:275281.CrossRefGoogle ScholarPubMed
Diaz, R. J., and Rosenberg, R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology Annual Review 33:245303.Google Scholar
Fagerstrom, J. A., and Weidlich, O. 2005. Biologic response to environmental stress in tropical reefs: lessons from modern Polynesian coralgal atolls and Middle Permian sponge and Shamovella-microbe reefs (Capitan Limestone USA). Facies 51:501515.CrossRefGoogle Scholar
Fisher, D. C. 1977. Mechanism and significance of enrollment in xiphosurans (Chelicerata, Merostomes). Geological Society of America Abstracts with Programs 9:264265.Google Scholar
Föllmi, K. B., and Grimm, K. A. 1990. Doomed pioneers: gravity flow deposition and bioturbation in marine oxygen-deficient environments. Geology 18:10691072.2.3.CO;2>CrossRefGoogle Scholar
Fraiser, M. L., and Bottjer, D. J. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios 19:259275.2.0.CO;2>CrossRefGoogle Scholar
Frest, T. J., Brett, C. E., and Witzke, B. J. 1999. Caradocian-Gedinnian echinoderm associations of central and eastern North America. World and Regional Geology 11:638783.Google Scholar
Fürsich, F. T. 1993. Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia 26:327346.CrossRefGoogle Scholar
Gaines, R. R., and Droser, M. L. 2003. Paleoecology of the familiar trilobite Elrathia kingii: an early exaerobic zone inhabitant. Geology 31:941944.CrossRefGoogle Scholar
Ginsburg, R. N. 1982. Actualistic depositional models for the Great American Bank (Cambro-Ordovician). International Congress on Sedimentology 11:114.Google Scholar
Helly, J. J., and Levin, L. A. 2004. Global distribution of naturally occurring marine hypoxia continental margins. Deep-Sea Research Part I 51:11591168.CrossRefGoogle Scholar
Henderson, R. A. 2004. A mid-Cretaceous association of shell beds and organic-rich shale: bivalve exploitation of a nutrientrich, anoxic sea-floor environment. Palaios 19:156169.2.0.CO;2>CrossRefGoogle Scholar
Holland, S. M., Miller, A. I., and Meyer, D. L. 2000. High-resolution correlation in apparently monotonous rocks: Upper Ordovician Kope Formation. Palaios 15:7380.2.0.CO;2>CrossRefGoogle ScholarPubMed
Hughes, N. C., and Cooper, D. L. 1999. Paleobiologic and taphonomic aspects of the “granulosa“ trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region). Journal of Paleontology 73:306319.CrossRefGoogle Scholar
Hunda, B. R., Hughes, N. C., and Flessa, K. W. 2006. Trilobite taphonomy and temporal resolution in the Mt. Orab Shale Bed (Upper Ordovician, Ohio, U.S.A.). Palaios 21:2645.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science 252:18311833.CrossRefGoogle ScholarPubMed
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.CrossRefGoogle ScholarPubMed
Jacobs, D. K., and Lindberg, D. R. 1998. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences USA 95:93969401.CrossRefGoogle ScholarPubMed
Johnson, J. G. 1974. Extinction of perched faunas. Geology 2:479482.2.0.CO;2>CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 2006. The “age of crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238248.CrossRefGoogle Scholar
Kamykowski, D., and Zentara, S.-J. 1990. Hypoxia in the world ocean as recorded in the historical data set. Deep-Sea Research 37:18611874.CrossRefGoogle Scholar
Keeling, R. F., and Garcia, H. E. 2002. The change in oceanic O2 inventory associated with recent global warming. Proceedings of the National Academy of Sciences USA 99:78487853.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 1988. Taphonomic comparison of passive and active continental margins: Neogene shell beds of the Atlantic coastal plain and northern Gulf of California. Palaeogeography, Palaeoclimatology, Palaeoecology 63:201223.CrossRefGoogle Scholar
Kohrs, R., Brett, C. E., and O'Brien, N. 2007. Sedimentology of Upper Ordovician mudstones from the Cincinnati Arch region, Ohio/Kentucky: toward a general model of mud event deposition. In McLaughlin, P. I., Brett, C. E., McLaughlin, S. L. Taha, and Bazeley, J., eds. Stratigraphic renaissance in the Cincinnati Arch: implications for Upper Ordovician paleontology and paleoecology. Cincinnati Museum Center Special Publication 2 (in press).Google Scholar
Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community responses to hypoxia. Oceanography and Marine Biology 41:145.Google Scholar
Miller, A. I., Holland, S. M., Meyer, D. L., and Dattilo, B. F. 2001. The use of faunal gradient analysis for intraregional correlation and assessment of changes in sea-floor topography in the type Cincinnatian. Journal of Geology 109:603613.CrossRefGoogle Scholar
Miller, K. J., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Chris-Blick, N., and Pekar, S. F. 2005. The Phanerozoic record of global sea-level change. Nature 310:12931298.Google ScholarPubMed
Newell, N. D. 1949. Periodicity in invertebrate evolution. Geological Society of America Bulletin 60:19111912.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate paleontology. Journal of Paleontology 26:371385.Google Scholar
Nordberg, K., Filipsson, H. L., Gustafsson, M., Harland, R., and Ross, P. 2001. Climate, hydrographic variations and marine benthic hypoxia in Koljo Fjord, Sweden. Journal of Sea Research 46:187200.CrossRefGoogle Scholar
Osgood, R. G. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana 6:281444.Google Scholar
Osterman, L. E., Poore, R. Z., Swarzenski, P. W., and Turner, R. E. 2005. Reconstructing a 180 yr record of natural and anthropogenic induced low-oxygen conditions from Louisiana continental shelf sediments. Geology 33:329332.CrossRefGoogle Scholar
Peters, S. E. 2004. Evenness of Cambrian-Ordovician benthic marine communities in North America. Paleobiology 30:325346.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.CrossRefGoogle ScholarPubMed
Peters, S. E. 2006. Macrostratigraphy of North America. Journal of Geology 114:391412.CrossRefGoogle Scholar
Pihl, L., Baden, S. P., Diaz, R. J., and Shaffner, L. C. 1992. Hypoxia-induced structural changes in the diet of bottom-feeding fish and Crustacea. Marine Biology 112:349361.CrossRefGoogle Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.2.0.CO;2>CrossRefGoogle Scholar
Rabalais, N. N., Turner, E., and Wiseman, W. J. Jr. 2002. Gulf of Mexico hypoxia, a.k.a. “the dead zone.” Annual Review of Ecology and Systematics 33:235363.CrossRefGoogle Scholar
Reaves, C. M. 1986. Organic matter metabolizability and calcium carbonate dissolution in nearshore marine muds. Journal of Sedimentary Petrology 56:486494.CrossRefGoogle Scholar
Rhoads, D. C., and Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient basins. Lethaia 4:413428.CrossRefGoogle Scholar
Ronov, A. B. 1978. The Earth's sedimentary shell. International Geology Review 24:13131363.CrossRefGoogle Scholar
Ronov, A. B. 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science 294:777801.CrossRefGoogle Scholar
Ronov, A. B., Khain, V. E., Balukhovsky, A. N., and Seslavinsky, K. B. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology 25:311325.CrossRefGoogle Scholar
Ruedemann, R. 1935. Ecology of black mud shales of eastern New York. Journal of Paleontology 9:7991.Google Scholar
Savrda, C. E., and Bottjer, D. J. 1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14:306309.2.0.CO;2>CrossRefGoogle Scholar
Savrda, C. E., and Bottjer, D. J. 1987. The exaerobic zone, a new oxygen-deficient marine biofacies. Nature 327:5456.CrossRefGoogle Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.CrossRefGoogle Scholar
Schovsbo, N. H. 2001. Why barren intervals? A taphonomic case study of the Alum Shale and its faunas. Lethaia 34:271285.CrossRefGoogle Scholar
Schumacher, G. A., and Shrake, D. L. 1997. Paleoecology and comparative taphonomy of an Isotelus (Trilobita) fossil lagerstätten from the Waynesville Formation (Upper Ordovician, Cincinnatian Series) of southwestern Ohio. Pp. 131161 in Brett, C. E. and Baird, G. C., eds. Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:560.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J. Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. Journal of Geology 82:267274.CrossRefGoogle Scholar
Sorokin, Y. I. 2002. The Black Sea: ecology and oceanography. Backhuys, Leiden.Google Scholar
Speyer, S. E. 1990. Enrollment in trilobites. Pp. 450455 in Boucot, A. J., ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Speyer, S. E., and Brett, C. E. 1986. Trilobite taphonomy and Middle Devonian taphofacies. Palaios 1:312327.CrossRefGoogle Scholar
Stachowitsch, M. 1991. Anoxia in the Northern Adriatic Sea: rapid death, slow recovery. Pp. 119130 in Tyson, and Pearson, 1991b.CrossRefGoogle Scholar
Tsujita, C. J., Brett, C. E., Topor, M., and Topor, J. 2006. Evidence of high-frequency storm disturbance in the Middle Devonian Arkona Shale, southwestern Ontario. Journal of Taphonomy 4:4968.Google Scholar
Tyson, R. V., and Pearson, T. H. 1991a. Modern and ancient continental shelf anoxia: an overview. Pp. 126 in Tyson, and Pearson, 1991b.CrossRefGoogle Scholar
Tyson, R. V., and Pearson, T. H., eds. 1991b. Modern and ancient continental shelf anoxia. Geological Society of London Special Publication 58.CrossRefGoogle Scholar
Valentine, J. W., and Moores, E. M. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657659.CrossRefGoogle ScholarPubMed
Veizer, J., and Ernst, R. E. 1996. Temporal patterns of sedimentation: Phanerozoic of North America. Geochemistry International 33:6476.Google Scholar
Webber, A. J. 2002. High-resolution faunal gradient analysis and an assessment of the causes of meter-scale cyclicity in the type Cincinnatian Series (Upper Ordovician). Palaios 17:545555.2.0.CO;2>CrossRefGoogle Scholar
Wells, M. R., Allison, P. A., Hampson, G. J., Piggott, M. D., and Pain, C. C. 2005. Modeling ancient tides: the Upper Carboniferous epi-continental seaway of Northwest Europe. Sedimentology 52:715735.CrossRefGoogle Scholar
Wignall, P. B. 1994. Black shales. Oxford Monographs on Geology and Geophysics No. 30. Clarendon, Oxford.Google Scholar