Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T04:51:33.008Z Has data issue: false hasContentIssue false

Predation on feather stars by regular echinoids as evidenced by laboratory and field observations and its paleobiological implications

Published online by Cambridge University Press:  16 February 2017

Angela Stevenson
Affiliation:
School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland. E-mail: [email protected]
Forest J. Gahn
Affiliation:
Department of Geology, Brigham Young University–Idaho, Rexburg, Idaho 83460, U.S.A.
Tomasz K. Baumiller
Affiliation:
Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
George D. Sevastopulo
Affiliation:
School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland. E-mail: [email protected]

Abstract

Among extant crinoids, the feather stars are the most diverse and occupy the greatest bathymetric range, being especially common in reef environments. Feather stars possess a variety of morphological, behavioral and physiological traits that have been hypothesized to be critical to their success, especially in their ability to cope with predation. However, knowledge of their predators is exceptionally scant, consisting primarily of circumstantial evidence of attacks by fishes. In this study the question whether regular echinoids, recently shown to consume stalked crinoids, also consume feather stars is explored. Aquarium observations indicate that regular echinoids find feather stars palatable, including feather stars known to be distasteful to fish, and that regular echinoids can capture and eat live feather stars, including those known to swim. Gut-content analyses of the echinoid Araeosoma fenestratum (Thomson, 1872), which is commonly observed with large populations of the feather star Koehlermetra porrecta (Carpenter, 1888) in video transects from marine canyons off the coast of France, revealed elements of feather stars in the guts of 6 of 13 individuals. The high proportion of crinoid material (up to 90%), and the presence of articulated crinoid skeletal elements in the gut of A. fenestratum, suggest that these echinoids consumed at least some live crinoids, although they may have also ingested some postmortem remains found in the sediment. Additionally, photographic evidence from the northeast Atlantic suggests that another regular echinoid, Cidaris cidaris (Linnaeus, 1758), preys on feather stars. Thus in spite of the broad suite of antipredatory adaptations, feather stars are today subject to predation by regular echinoids and may have been since the Mesozoic, when this group of crinoids first appeared.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bakus, G. J. 1981. Chemical defense mechanisms on the Great Barrier Reef, Australia. Science 211:497499.CrossRefGoogle ScholarPubMed
Baumiller, T. K. 2003. Experimental and biostratinomic disarticulation of crinoids: taphonomic implications. Pp. 243248. in J. P. Féral, and B. David, eds. Echinoderm research 2001. Balkema, Rotterdam.Google Scholar
Baumiller, T. K. 2013. Arm regeneration frequencies in Florometra serratissima (Crinoidea, Echinodermata): impact of depth of habitat on rates of arm loss. Cahiers de Biologie Marine 54:571576.Google Scholar
Baumiller, T. K., and Gahn, F. J. 2003. Predation on crinoids. In P. Kelley, M. Kowalewski, and T. H. Hansen, eds. Predator–prey interactions in the fossil record. Topics in Geobiology 20:263278. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Baumiller, T. K., and Gahn, F. J. 2013. Reconstructing predation pressure on crinoids: estimating arm-loss rates from regenerating arms. Paleobiology 39:4051.CrossRefGoogle Scholar
Baumiller, T. K., and Messing, C. G. 2007. Stalked crinoid locomotion, and its ecological and evolutionary implications. Palaeontologia Electronica 10:110.Google Scholar
Baumiller, T. K., LaBarbera, M., and Woodley, J. W. 1991. Ecology and functional morphology of the isocrinid Cenocrinus asterius (L.) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science 48:731748.Google Scholar
Baumiller, T. K., Mooi, R., and Messing, C. G. 2008. Urchins in the meadow: paleobiological and evolutionary implications of cidaroid predation on crinoids. Paleobiology 34:2234.CrossRefGoogle Scholar
Baumiller, T. K., Salamon, M. A., Gorzelak, P., Mooi, R., Messing, C. G., and Gahn, F. J. 2010. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proceedings of the National Academy of Sciences USA 107:58935896.CrossRefGoogle ScholarPubMed
Blainville, H. M. D. d. 1825. Oursin, Echinus (Actinozoaires). Pp. 59–98 in Dictionnaire des sciences naturelles. F. G. Levrault, Strasbourg & Paris. http://www.biodiversitylibrary.org/item/81570#page/5/mode/1up.Google Scholar
Blyth Cain, J. D. 1968. Aspects of the depositional environment and paleoecology of crinoidal limestones. Scottish Journal of Geology 4:191208.CrossRefGoogle Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Bowden, D. A., Schiaparelli, S., Clark, M. R., and Rickard, G. J. 2011. A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep-Sea Research II 1(58), 119127.CrossRefGoogle Scholar
Brandt, J.F. 1835. Prodromus descriptionis animalium ab H. Mertensio in orbis terrarum circumnavigatione observatorum. Pp. 1–75 in Animalia Mertensii 1. Graeff, Petropoli and Leop. Voss, Leipzig.Google Scholar
Bryan, P. J., McClintock, J. B., and Hopkins, T. S. 1997. Structural and chemical defenses of echinoderms from the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 210:173186.CrossRefGoogle Scholar
Carpenter, P. H. 1881. On the genus Solanocrinus, Goldfuss, and its relations to recent Comatulae. Journal of the Linnean Society of London (Zoology) 15:187217. plates 9–12.CrossRefGoogle Scholar
Carpenter, P. H. 1884. Report on the Crinoidea collected during the voyage of H.M.S. Challenger, during the years 1873–1876. Part I. The stalked crinoids. Report on the scientific results of the voyage of H.M.S. Challenger. Zoology 11(32).CrossRefGoogle Scholar
Carpenter, P. H. 1888. Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–76. Part II. The Comatulæ. Pp. i–ix, 1–399, Plates I–LXX in C. W. Thomson and J. Murray. Report of the scientific results of the voyage of H.M.S. Challenger during the years 1873–76 under the command of Captain George S. Nares and Captain Frank Tourle Thomson. Zoology XXVI.Google Scholar
Carvalho, C.N.D., Pereira, B.C., Klompmaker, A., Baucon, A., Moita, J. A., Pereira, P., Machado, S., Belo, J., Carvalho, J., and Mergulhão, L. 2016. Running crabs, walking crinoids, grazing gastropods: behavioral diversity and evolutionary implications in the Cabeço da Ladeira lagerstätte (Middle Jurassic, Portugal). Comunicações Geológicas 2016:3954.Google Scholar
Clark, A. H. 1907. Description of new species of recent unstalked crinoids from the North Pacific Ocean. Proceedings of the United States National Museum 33(1559), 6984.CrossRefGoogle Scholar
Clark, A. H. 1950. A monograph of the existing crinoids, Part 4C. Bulletin of the American Museum of Natural History 82:1383.Google Scholar
Clark, H. L. 1915. The comatulids of Torres Strait: with special reference to their habits and reactions. Papers from the Department of Marine Biology of the Carnegie Institution of Washington 8:97125.Google Scholar
Clarke, J. M. 1921. Organic dependence and disease: their origin and significance. New York State Museum Bulletin 221–222:1113.Google Scholar
D’Orbigny, A. 1840–1841. Histoire naturelle, générale et particulière, des Crinoides vivants et fossils, comprenant la description zoologique et géologique de ces animaux. Livr. 1, pp. 1–32 (1840); livr. 2–3, 33–98 (1841) (republished 1858). Published by the author, Paris.Google Scholar
Fryda, J., Racheboeuf, P.R., and Frydová, B. 2008. Mode of life of Early Devonian Orthonychia protei (Neritimorpha, Gastropoda) inferred from its post-larval shell ontogeny and muscle scars. Bulletin of Geosciences 83:491502.CrossRefGoogle Scholar
Gahn, F. J., and Baumiller, T. K. 2003. Infestation of Middle Devonian (Givetian) camerate crinoids by platyceratid gastropods and its implications on the nature of their biotic interaction. Lethaia 36:7182.CrossRefGoogle Scholar
Gahn, F. J., and Baumiller, T. K. 2006. Platyceratid gastropod behaviour as a guide to camerate crinoid functional morphology. Historical Biology 18:397404.CrossRefGoogle Scholar
Gahn, F. J., and Baumiller, T. K. 2010. Evolutionary history of regeneration in crinoids (Echinodermata). Integrative and Comparative Biology 50:514a514m.CrossRefGoogle ScholarPubMed
Gorzelak, P., Salamon, M. A., and Baumiller, T. K. 2012. Predator-induced macroevolutionary trends in Mesozoic crinoids. Proceedings of the National Academy of Sciences USA 109:70047007.Google ScholarPubMed
Gruvel, A. 1911. Contribution à l'étude générale systématique et économique des Palinuridae. Mission Gruvel sur la côte occidentale d’Afrique (1909–1910). Résultats scientifiques et économiques. Annales Institut océanographique Monaco 3(4), 556.Google Scholar
Harper, E. M., and Peck, L. S. 2016. Latitudinal and depth gradients in marine predation pressure. Global Ecology and Biogeography 25:670678.CrossRefGoogle Scholar
Hess, H. 2014a. Origin and radiation of the comatulids (Crinoidea) in the Jurassic. Swiss Journal of Palaeontology 133:2334.CrossRefGoogle Scholar
Hess, H. 2014b. Seeigel auf Seelilienjagd. Fossilien 2/2014:1719.Google Scholar
Hess, H., and Messing, C. G. 2011. Comatulida. In: Hess, H., Messing, C.G., Ausich, W.I. (Eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2 Revised, Crinoidea, vol. 3. University of Kansas Press, Lawrence, Kansas, pp. 70146.Google Scholar
Jablonski, D. 2008. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:715739.CrossRefGoogle ScholarPubMed
Janevski, G. A., and Baumiller, T. K. 2010. Could a stalked crinoid swim? A biomechanical model and characteristics of swimming crinoids. Palaios 25:588596.CrossRefGoogle Scholar
Koehler, R. 1901. Zoologie—Échinides et Ophiures. Résultats du Voyage du S.Y. Belgica en 1897–1898–1899 sous le commandement de A. de Gerlache de Gomery. Buschmann, Antwerp. http://www.vliz.be/nl/open-marien-archief?module=ref&refid=33127.Google Scholar
Kroh, A., and Smith, A. B. 2010. The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology 8:147212.CrossRefGoogle Scholar
Lamarck, J. B. M. de 1816. Histoire naturelle des animaux sans vertèbres. Tome troisième. Deterville/Verdière, Paris.Google Scholar
Lane, N. G. 1984. Predation and survival among inadunate crinoids. Paleobiology 10:453458.CrossRefGoogle Scholar
Lawrence, J. M., and Vasquez, J. 1996. The effect of sublethal predation on the biology of echinoderms. Oceanologica Acta 19:431440.Google Scholar
Leach, W. E. 1815. The zoological miscellany 2; being descriptions of new, or interesting animals. London.Google Scholar
Leske, N. G. 1778. Jacobi Theodori Klein naturalis dispositio echinodermatum…, edita et descriptionibus novisque inventis et synonomis auctorem aucta. Addimenta ad I. T. Klein naturalem dispositionem Echinodermatum. G. E. Beer, Leipzig. http://digitale.bibliothek.uni-halle.de/vd18/id/8771247.Google Scholar
Liddell, W. D. 1975. Recent crinoid biostratinomy. Geological Society of America Abstracts with Programs 4:1169.Google Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentii Salvii, Holmiae [Stockholm].Google Scholar
Macurda, D. B., and Meyer, D. L. 1983. Sea lilies and feather stars. American Scientist 71:354365.Google Scholar
McClintock, J. B., Baker, B. J., Baumiller, T. K., and Messing, C. G. 1999. Lack of chemical defenses in two species of stalked crinoids: support for the predation hypothesis for Mesozoic bathymetric restriction. Journal Experimental Marine Biology and Ecology 232:17.CrossRefGoogle Scholar
Messing, C. G., RoseSmyth, M. C., Mailer, S. R., and Miller, J. E. 1988. Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science 42:480487.Google Scholar
Meyer, D. L. 1971. Post-mortem disarticulation of Recent crinoids and ophiuroids under natural conditions. Geological Society of America Abstracts with Programs 3:645.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology 11:154164.CrossRefGoogle Scholar
Meyer, D. L., and Ausich, W. I. 1983. Biotic interactions among Recent and fossil crinoids. Pp. 377427. in M. J. S. Tevesz, and P. L. McCall, eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of comatulid crinoids. Paleobiology 3:7482.CrossRefGoogle Scholar
Meyer, D. L., LaHaye, C. A., Holland, N. D., Arenson, A. C., and Strickler, J. R. 1984. Time-lapse cinematography of feather stars (Echinodermata: Crinoidea) on the Great Barrier Reef, Australia: demonstrations of posture changes, locomotion, spawning and possible predation by fish. Marine Biology 78:179184.CrossRefGoogle Scholar
Mladenov, P. V. 1983. Rate of arm regeneration and potential causes of arm loss in the feather star Florometra serratissima (Echinodermata: Crinoidea). Canadian Journal of Zoology 61:28732879.CrossRefGoogle Scholar
Müller, J. 1841. Über die Gattungen und Arten der Comatulen. Monatsberichte Königlich Preussische Akademie der Wissenschaften zu Berlin.Google Scholar
Oji, T. 1986. Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, recent stalked crinoids. Lethaia 19:355360.CrossRefGoogle Scholar
Oji, T. 1996. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22:339351.CrossRefGoogle Scholar
Oji, T., and Okamoto, T. 1994. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology 20:2739.CrossRefGoogle Scholar
Pallas, P. S. 1774. Spicilegia zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur cura P. S. Pallas. Lange, Berlin Fasciculus 10. http://www.biodiversitylibrary.org/item/88619#page/103/mode/1up.Google Scholar
Pennant, T. 1777. Crustacea. Mollusca. Testacea. Vol. 4 of British Zoology. London. http://www.biodiversitylibrary.org/item/127011.Google Scholar
Quoy, J. R., and Gaimard, P. 1825. Zoologie. Poissons. Pp.183–401 in L. de Frecinet. Voyage autour de monde, entrepris par ordre du Roi, exécuté sur les corvettes de S M l’URANIE et la PHYSICIENNE, pendant les années 1817–1820. Paris.Google Scholar
Rideout, J. A., Smith, N. B., and Sutherland, M. D. 1979. Chemical defense of crinoids by polyketide sulphates. Experientia 35:12731274.Google ScholarPubMed
Rouse, G. W., Jermiin, L. S., Wilson, N. G., Eeckhaut, I., Lanterbecq, D., Oji, T., Young, C. M., Browning, T., Cisternas, P., Helgen, L. E., and Stuckey, M. 2013. Fixed, free, and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin. Molecular Phylogenetics and Evolution 66:161181.CrossRefGoogle ScholarPubMed
Sallan, L. C., Kammer, T. W., Ausich, W. I., and Cook, L. A. 2010. Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences USA 108:83358338.CrossRefGoogle Scholar
Schneider, C. L. 2008. The importance of echinoids in late Paleozoic ecosystems. Pp. 7190. in W. I. Ausich, and G. Webster, eds. Echinodermata paleobiology. Indiana University Press, Bloomington.Google Scholar
Schneider, J. A. 1988. Frequency of arm regeneration of comatulid crinoids in relation to life habit. Pp. 531538. in R. D. Burke, P. V. Mladenov, P. Lambert, and R. L. Parsley, eds. Echinoderm biology. Balkema, Rotterdam.Google Scholar
Shaw, G. D., and Fontaine, A. R. 1990. The locomotion of the comatulid Florometra serratissima (Echinodermata: Crinoidea) and its adaptive significance. Canadian Journal of Zoology 68:942950.CrossRefGoogle Scholar
Signor, P. W., and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Slattery, M. 2010. Bioactive compounds from echinoderms: Ecological and evolutionary perspectives. Pp. 591600. in L. G. Harris, S. A. Boettger, C. W. Walker, and M. P. Lesser, eds. Echinoderms. CRC Press, London.Google Scholar
Smith, E. A. 1876. Descriptions of species of Asteridae and Ophiuridae from Kerguelen Islands. Annals of Natural History 17:105113. http://biodiversitylibrary.org/page/19267007.CrossRefGoogle Scholar
Stevenson, A. 2014. Deep-sea coral reef ecology: Feeding mechanisms, community interactions, and habitat associations of deep-sea echinoids. Ph.D. dissertation, Trinity College, Dublin.Google Scholar
Stevenson, A., and Rocha, C. 2013. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic. Deep-Sea Research I 71:7378.CrossRefGoogle Scholar
Syverson, V. J., and Baumiller, T. K. 2014. Temporal trends of predation resistance in Paleozoic crinoid arm branching morphologies. Paleobiology 40:417427.CrossRefGoogle Scholar
Thomson, C. W. 1872. On the Echinidea of the “Porcupine” deep-sea dredging expeditions. Proceedings of the Royal Society of London 20:491497. https://archive.org/stream/philtrans00795337/00795337#page/n0/mode/2up.Google Scholar
Tinkova, T. V., Kasumyan, A. O., Dgebuadze, P. Y., Oanh, L. T. K., and Britaev, T. A. 2014. Deterrence of feather stars (Crinoidea, Comatulida) from Southern Vietnam for the Indo-Pacific sergeant-fish Abudefduf vaigiensis . Doklady Biological Sciences 456:195198.CrossRefGoogle ScholarPubMed
Vasserot, J. 1965. Un prédateur d’échinodermes s’attaquant particulièrement aux ophiures: la langouste Palinurus vulgaris . Bulletin de la Société Zoologique de France 90:365384.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Voje, K. L., Holen, Ø. H., Liow, L. H., and Stenseth, N. C. 2015. The role of biotic forces in driving macroevolution: beyond the Red Queen. Proceedings of the Royal Society of London B 282:20150186.Google ScholarPubMed
Wright, T. W. 1857–1878. Monograph on the British fossil Echinodermata of the Oolitic formations. I. Echinoidea. Monographs of the Palaeontographical Society London , i–iv (March 1878); v–x,1–154, pls 1–10 (Feb. 1857); 155–302, pls 11–12 (April 1858); 303–390, pls 13–26 (Nov. 1859); 391–468, pls 37–43 (March 1861); 469–481 (March 1878).Google Scholar
Supplementary material: File

Stevenson supplementary material

Supplementary Movie

Download Stevenson supplementary material(File)
File 12.5 MB