Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T17:42:29.944Z Has data issue: false hasContentIssue false

Polarity of concavo-convex intervertebral joints in the necks and tails of sauropod dinosaurs

Published online by Cambridge University Press:  27 June 2016

John A. Fronimos
Affiliation:
Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1079, U.S.A. E-mail: [email protected], [email protected], [email protected]
Jeffrey A. Wilson
Affiliation:
Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1079, U.S.A. E-mail: [email protected], [email protected], [email protected]
Tomasz K. Baumiller
Affiliation:
Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1079, U.S.A. E-mail: [email protected], [email protected], [email protected]

Abstract

The highly elongated necks, and often tails, of sauropod dinosaurs were composed of concavo-convex vertebrae that provided stability without compromising mobility. Polarities of these concavo-convex joints in the neck and tail are anatomically opposite one another but mechanically equivalent. Opisthocoelous cervical vertebrae and procoelous caudal vertebrae have the convex articular face directed away from the body and the concave articular face directed toward the body. This “sauropod-type” polarity is hypothesized to be (1) more resistant to fracturing of the cotylar rim and (2) better stabilized against joint failure by rotation than the opposite polarity. We used physical models to test these two functional hypotheses. Photoelastic analysis of model centra loaded as cantilevers reveals that neither polarity better resists fracture of the cotylar rim; strain magnitude and localization are similar in both polarities. We assessed the rotational stability of concavo-convex joints using pairs of concavo-convex centra loaded near the joint. Sauropod-type joints withstood significantly greater weight before failure occurred, a pattern we interpret to be dependent on the position of the center of rotation, which is always within the convex part of the concavo-convex joint. In sauropod-type joints, the free centrum rotates about a center of rotation that lies within the more stable proximal centrum. In contrast, the opposite polarity results in a free centrum that rotates about an internal point; when the condyle rotates down and out of joint, the distal end rotates back toward the body, unopposed by ligamentous support. Sauropod-type joints remained stable with greater mobility, more mechanically advantageous tensile element insertions, and greater distal loads than the opposite polarity. The advantages conferred by this joint polarity would have facilitated the evolution of hyperelongated necks and tails by sauropods. Polarity of concavo-convex joints of the appendicular skeleton (e.g., hip, shoulder) is also consistent with the demands of rotational stability.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. M. 1989. Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York.Google Scholar
Allain, R., Aquesbi, N., Dejax, J., Meyer, C., Monbaron, M., Montenat, C., Richir, P., Rochdy, M., Russell, D., and Taquet., P. 2004. A basal sauropod dinosaur from the Early Jurassic of Morocco. Comptes Rendus Palevol 3:199208.Google Scholar
Baulot, E., Sirveaux, F., and Boileau., P. 2011. Grammont’s idea: the story of Paul Grammont’s functional surgery concept and the development of the reverse principle. Clinical Orthopaedics and Related Research 469:24252431.CrossRefGoogle ScholarPubMed
Bird, R. T. 1941. A dinosaur walks into the museum. Natural History 47:7481.Google Scholar
Bonaparte, J. F., Heinrich, W.-D., and Wild., R. 2000. Review of Janenschia Wild, with the description of a new sauropod from the Tendaguru beds of Tanzania and a discussion on the systematic value of procoelous caudal vertebrae in the sauropoda. Palaeontographica Abteilung A 256:2576.Google Scholar
Borsuk-Bialynicka, M. 1977. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Acta Palaeontologica Polonica 37:164.Google Scholar
Calvo, J. O., and Salgado., L. 1995. Rebbachisaurus tessonei sp. nov.: a new Sauropoda from the Albian–Cenomanian of Argentina; new evidence on the origin of the Diplodocidae. Gaia 11:1333.Google Scholar
Coombs, W. P. 1975. Sauropod habits and habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 17:133.CrossRefGoogle Scholar
Crisco, J. J., and Panjabi., M. M. 1991. The intersegmental and multisegmental muscles of the lumbar spine: a biomechanical model comparing lateral stabilizing potential. Spine 16:793799.Google Scholar
Dimery, N., Alexander, R. M., and Deyst., K. A. 1985. Mechanics of the ligamentum nuchae of some artiodactyls. Journal of Zoology 206:341351.Google Scholar
Epoxy Technology, Inc. 2012. EPO-TEK® 301 Technical Data Sheet. Billerica, Mass.Google Scholar
Fick, L. 1845. Physiologische Anatomie des Menschen. Christian Ernst Kollman, Leipzig.Google Scholar
Fick, R. 1890. Ueber die Form der Gelenkflächen. Archiv für Anatomie und Physiologie, Anatomische Abteilung 1890:391402.Google Scholar
Fick, R. 1904. Handbuch der Anatomie und Mechanik der Gelenke unter Berücksichtigung der bewegenden Muskeln. Erster Teil: Anatomie der Gelenke. Gustav Fischer, Jena, Germany.Google Scholar
Fronimos, J. A., and Wilson., J. A. 2013. Function and polarity of concavo-convex articulations in the vertebral centra of sauropod dinosaurs with implications for other vertebrates. Journal of Vertebrate Paleontology, Society of Vertebrate Paleontology Program and Abstracts Book 2013:131.Google Scholar
Gatesy, S. M. 1991. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16:170186.Google Scholar
Gosnold, W. D., and Slaughter., R. H. 1977. Procoelus versus opisthocoelus vertebrae. Texas Journal of Science 28:355356.Google Scholar
Grammont, P. 1979. Place de l’ostéotomie de l’épine de l’omoplate avec translation, rotation, élévation de l’acromion dans les ruptures chroniques de la coiffe des rotateurs. Lyon Chirurgical 75:327329.Google Scholar
Henke, W., and Reyher., C. 1874. Studien über die Entwickelung der Extremitäten des Menschen, inbesondere der Gelenkflächen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 70:217273.Google Scholar
Hoffstetter, R., and Gasc., J.-P. 1969. Vertebrae and ribs of modern reptiles. Pp. 201310 in C. Gans, A. d. A. Bellairs, and T. S. Parsons, eds. Biology of the Reptilia, Vol. 1. Morphology A. Academic, London.Google Scholar
Janensch, W. 1950. Die Wirbelsäule von Brachiosaurus brancai . Palaeontographica 1:2793.Google Scholar
Janvier, P. 1996. Early vertebrates. Clarendon, Oxford.Google Scholar
McIntosh, J. S. 1990. Species determination in sauropod dinosaurs with tentative suggestions for their classification. Pp. 5369 in K. Carpenter, and P. J. Currie, eds. Dinosaur systematics: approaches and perspectives. Cambridge University Press, Cambridge.Google Scholar
Nopcsa, F. 1930. Über prozöle und opisthozöle Wirbel. Anatomische Anzeiger 69:1925.Google Scholar
Owen, R. 1859a. On the orders of fossil and recent Reptilia, and their distribution in time. Report of the British Association for the Advancement of Science 29:153166.Google Scholar
Owen, R. 1859b. On the vertebral characters of the order Pterosauria, as exemplified in the genera Pterodactylus (Cuvier) and Dimorphodon (Owen). Philosophical Transactions of the Royal Society of London 149:161169.Google Scholar
Patwardhan, A. G., Havey, R. M., Meade, K. P., Lee, B., and Dunlap., B. 1999. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:10031009.Google Scholar
Pollard, H. B. 1892. On the anatomy and phylogenetic position of Polypterus . Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 5:387428.Google Scholar
Post, D. 1979. Photoelasticity. Pp. 176192 in A. S. Kobayashi, ed. Manual on experimental stress analysis, 3rd ed. Society for Experimental Stress Analysis, Westport, Conn.Google Scholar
Powell, J. E. 2003. Revision of South American titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects. Records of the Queen Victoria Museum 111:1173.Google Scholar
Renous, S., Gasc, J.-P., Bels, V. L., and Wicker, R.. 2002. Asymmetric gaits of juvenile Crocodylus johnstoni, galloping Australian crocodiles. Journal of Zoology 256:311325.Google Scholar
Rosen, D. E., Forey, P. L., Gardiner, B. G., and Patterson, C.. 1981. Lungfishes, tetrapods, paleontology, and plesiomorphy. Bulletin of the American Museum of Natural History 167:159276.Google Scholar
Roux, W. 1891. Rudolf Fick, Ueber die Form der Gelenkflächen. Biologisches Zentralblatt 11:188189.Google Scholar
Russell, A, P., and Bauer, A. M.. 1992. The m. caudofemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). Journal of Zoology 227:127143.Google Scholar
Salgado, L., Coria, R. A., and Calvo, J. O.. 1997. Evolution of titanosaurid sauropods. I: phylogenetic analysis based on the postcranial evidence. Ameghiniana 34:332.Google Scholar
Salisbury, S. W., and Frey, E.. 2001. A biomechanical transformation model for the evolution of semi-spheroidal articulations between adjoining vertebral bodies in crocodilians. Pp. 85134 in G. C. Grigg, F. Seebacher, and C. E. Franklin, eds. Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, U.K.Google Scholar
Schwarz, D., Frey, E., and Meyer, C. A.. 2007. Pneumaticity and soft-tissue reconstructions in the neck of diplodocid and dicraeosaurid sauropods. Acta Palaeontologica Polonica 52:167188.Google Scholar
Sereno, P. C. 1991. Basal archosaurs: phylogenetic relationships and functional implications. Society of Vertebrate Paleontology Memoir 2:153.CrossRefGoogle Scholar
Slijper, E. J. 1946. Comparative biologic-anatomical investigations of the vertebral column and spinal musculature of mammals. Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen, Afdeling Natuurkunde, Tweede Sectie 2:1128.Google Scholar
Taylor, M. P., and Wedel, M. J.. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36.Google Scholar
Troxell, E. L. 1925. Mechanics of crocodile vertebrae. Geological Society of America Bulletin 36:605614.Google Scholar
Tsuihiji, T. 2004. The ligament system in the neck of Rhea americana and its implications for the bifurcated neural spines of sauropod dinosaurs. Journal of Vertebrate Paleontology 24:165172.Google Scholar
Upchurch, P., Barrett, P. M., and Dodson, P.. 2004. Sauropoda. Pp. 259322 in D. B. Weishampel, P. Dodson, and H. Osmólska, eds. The Dinosauria, 2nd ed. University of California Press, Berkeley.Google Scholar
Virchow, H. 1914. Über die Alligatorwirbelsäule. Archiv für Anatomie und Physiologie Anatomische Abteilung 1914:103142.Google Scholar
Williams, E. E. 1950. Variation and selection in the cervical centra articulations of living turtles. Bulletin of the American Museum of Natural History 94:505562.Google Scholar
Wilson, J. A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:217276.Google Scholar
Wilson, J. A., and Sereno, P. C.. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5:168.Google Scholar
Xing, L., Miyashita, T., Zhang, J., Li, D., Ye, Y., Sekiya, T., Wang, F., and Currie, P. J.. 2015. A new sauropod dinosaur from the Late Jurassic of China and the diversity, distribution, and relationships of mamenchisaurids. Journal of Vertebrate Paleontology 35:117.Google Scholar
Young, C.-C. 1954. On a new sauropod from Yiping, Szechuan, China. Scientia Sinica 3:491504.Google Scholar
Zhang, Y. 1988. The Middle Jurassic dinosaur fauna from Dashanpu, Zigong, Szechuan, Vol I. Sauropod dinosaur (I). Shunosaurus . Sichuan Publishing House of Science and Technology, Chengdu, China.Google Scholar