Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T19:27:15.314Z Has data issue: false hasContentIssue false

The plankton and the benthos: origins and early history of an evolving relationship

Published online by Cambridge University Press:  08 February 2016

Philip W. Signor
Affiliation:
Department of Geology and Center for Population Biology, University of California, Davis, California 95616
Geerat J. Vermeij
Affiliation:
Department of Geology and Center for Population Biology, University of California, Davis, California 95616

Abstract

Modern marine plankton communities include a broad diversity of metazoans that are suspension-feeding or micropredatory as adults. Many benthic marine species have larval stages that reside, and often feed, in the plankton for brief to very long periods of time, and most marine benthic communities include large numbers of suspension-feeders. This has not always been the case. Cambrian benthic communities included relatively few suspension-feeders. Similarly, there were few metazoan clades represented in the plankton, either as adult suspension-feeders or as larvae. Review of the fossil record suggests that the diversification of the plankton and suspension-feeding marine animals began in the Late Cambrian and continued into the Ordovician. These changes were accompanied by, and probably influenced, concurrent major changes in the marine realm, including an increase in tiering within benthic communities, the replacement of the Cambrian fauna by the Paleozoic fauna, and a general taxonomic diversification. The ultimate cause of these changes is uncertain, but it appears likely that the plankton was and is a refuge from predation and bioturbation for adults and larvae alike. The expansion in plankton biomass thus provided increased ecological opportunities for suspension-feeders in the plankton and benthos.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aldridge, R. J. 1988. Extinction and survival in the Conodonta. Pp. 231256in Larwood, G. P., ed. Extinction and survival in the fossil record. Clarendon, Oxford.Google Scholar
Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., and Smith, M. P. 1986. The affinities of conodonts—new evidence from the Carboniferous of Edinburgh, Scotland. Lethaia 19:279291.CrossRefGoogle Scholar
Alexander, R. M. 1990. Size, speed and buoyancy adaptations in aquatic animals. American Zoologist 30:189196.CrossRefGoogle Scholar
Allison, C. W., and Hilgert, J. W. 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology 60:9731015.CrossRefGoogle Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Bottjer, D. J. 1985. Phanerozoic tiering in suspension-feeding communities on soft substrata: implications for diversity. Pp. 255274in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746in Tevesz, and McCall, 1983.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press.Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Bandel, K. 1982. Morphologie und Bildung der frühontgenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1198.CrossRefGoogle Scholar
Bandel, K. 1988. Early ontogenetic shell and shell structure as aids to unravel gastropod phylogeny and evolution. Malacological Reviews Supplement 4:267272.Google Scholar
Bandel, K. 1991. Über Triassischen “Loxonematoidea” und ihre Beziehungen zu Rezenten und Paläozoischen Schnecken. Paläontologische Zeitschrift 65:239268.CrossRefGoogle Scholar
Bandel, K. 1992. Platyceratidae from the Triassic St. Cassian Formation and the evolutionary history of the Neritomorpha (Gastropoda). Paläontologische Zeitschrift 66:231240.Google Scholar
Bandel, K., and Hemleben, C. 1987. Jurassic heteropods and their modern counterparts (planktonic Gastropoda, Mollusca). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 174:122.Google Scholar
Bandel, K., Almogi-Labin, A., Hemleben, C., and Duser, W. G. 1984. The conch of Limacina and Peraclis (Pteropoda) and a model for the evolution of planktonic gastropods. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 168:87107.CrossRefGoogle Scholar
Bates, D. E. B., and Kirk, N. H. 1985. Graptolites, a fossil case-history of evolution from sessile colonial animals to automobile superindividuals. Proceedings of the Royal Society of London B 228:207224.Google Scholar
Bengtson, S. 1983. The early history of the Conodonta. Fossils and Strata 15:519.CrossRefGoogle Scholar
Bengtson, S., and Urbanek, A. 1986. Rhabdotubus, a Middle Cambrian rhabdopleurid hemichordate. Lethaia 19:293308.CrossRefGoogle Scholar
Bengtson, S., and Zhao, Y. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257:367369.CrossRefGoogle ScholarPubMed
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A., and Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9:1365.Google Scholar
Bergström, J. 1973. Organization, life, and systematics of trilobites. Fossils and Strata 2:169.CrossRefGoogle Scholar
Bergström, J. 1989. The origin of animal phyla and the new phylum Procoelomata. Lethaia 22:259269.CrossRefGoogle Scholar
Biernat, G., and Williams, A. 1970. Ultrastructure of the protegulum of some acrotretide brachiopods. Palaeontology 13:491502.Google Scholar
Birkeland, C. 1989. Geographic comparisons of coral-reef community processes. Proceedings of the Sixth International Coral Reef Symposium 1:211220.Google Scholar
Blake, D. B., and Guensburg, T. E. 1993. New Lower and Middle Ordovician stelleroids (Echinodermata) and their bearing on the origins and early history of the stelleroid echinoderms. Journal of Paleontology 67:103113.CrossRefGoogle Scholar
Bloeser, B. 1985. Melanocyrillium, a new genus of structurally complex Late Proterozoic microfossils from the Kwagunt Formation (Chuar Group), Grand Canyon, Arizona. Journal of Paleontology 59:741765.Google Scholar
Bloeser, B., Schopf, J. W., Horodyski, R. J., and Breed, W. J. 1977. Chitinozoans from the Late Precambrian Chuar Group of the Grand Canyon, Arizona. Science 195:676679.CrossRefGoogle ScholarPubMed
Boaden, P. J. S. 1989. Meiofauna and the origin of the Metazoa. Zoological Journal of the Linnean Society 96:217227.CrossRefGoogle Scholar
Bolton, T. E., and Copeland, M. J. 1963. Cambrotrypa and Bradoria from the Middle Cambrian of western Canada. Journal of Paleontology 37:10691070.Google Scholar
Bonem, R. M. 1982. Morphology and paleoecology of the Devonian rostroconch genus Bigalea. Journal of Paleontology 56:13621374.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? Journal of Paleontology 57:130.Google Scholar
Brasier, M. D. 1989. Toward a biostratigraphy of the earliest skeletal biotas. Pp. 117165in Cowie, J. W. and Brasier, M. D., eds. The Precambrian-Cambrian boundary. Clarendon, Oxford.Google Scholar
Bridge, D., Cunningham, C. W., Schierwater, L., DeSalle, R., and Buss, L. W. 1992. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proceedings of the National Academy of Science USA 89:87508753.CrossRefGoogle ScholarPubMed
Briggs, D. E. G. 1983. Affinities and early evolution of the Crustacea. Pp. 122in Schram, F. R., ed. Crustacean phylogeny. Balkema, Rotterdam.Google Scholar
Briggs, D. E. G., and Whittington, H. B. 1985. Modes of life of arthropods from the Burgess Shale, British Columbia. Transactions of the Royal Society of Edinburgh 76:149160.CrossRefGoogle Scholar
Briggs, D. E. G., Clarkson, E. N. K., and Aldridge, R. J. 1983. The conodont animal. Lethaia 16:114.CrossRefGoogle Scholar
Bulman, O. M. B. 1964. Lower Paleozoic plankton. Quarterly Journal of the Geological Society, London 120:455476.CrossRefGoogle Scholar
Bulman, O. M. B. 1970. Graptolithina, with sections on Enteropneusta and Pterobranchia, 2d ed. Treatise on invertebrate paleontology, part V, Teichert, C., ed. University of Kansas Press, Lawrence.Google Scholar
Camoin, G., Debrenne, F., and Gandin, A. 1989. Premieres images des communautes microbiennes dans les ecosystemes cambriens. Comptes rendus de l'Académie des Sciences, series 2, 308:14511458.Google Scholar
Chaffee, C., and Lindberg, D. R. 1986. Larval ecology of Early Cambrian molluscs: the implications of body size. Bulletin of Marine Science 39:536549.Google Scholar
Chen, J-Y., and Teichert, C. 1983. Cambrian Cephalopoda of China. Palaeontographica Abteilung A 181:1102.Google Scholar
Cherchi, A., and Schroeder, R. 1984. Middle Cambrian foraminifera and other microfossils from SW Sardinia. Bollettino della Societa Paleontologica Italiana 23:149160.Google Scholar
Conway Morris, S. 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 39:423467.Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature (London) 361:219225.CrossRefGoogle Scholar
Cowen, R. 1988. The role of algal symbiosis in reefs through time. Palaios 3:221227.CrossRefGoogle Scholar
Crimes, T. P. 1992. Changes in the trace fossil biota across the Proterozoic-Cambrian boundary. Journal of the Geological Society, London 149:637646.CrossRefGoogle Scholar
Crimes, T. P., and Droser, M. L. 1992. Trace fossils and bioturbation: the other fossil record. Annual Reviews of Ecology and Systematics 23:339360.CrossRefGoogle Scholar
Culver, S. J. 1991. Early Cambrian foraminifera from West Africa. Science 254:689691.CrossRefGoogle ScholarPubMed
Debrenne, F. and James, N. P. 1981. Reef-associated archaeocyathans from the Lower Cambrian of Labrador and Newfoundland. Palaeontology 24:343378.Google Scholar
Debrenne, F., and Vacelet, J. 1984. Archaeocyatha: is the sponge model consistent with their structural organization? Palaeontographica Americana 54:358369.Google Scholar
Debrenne, F., and Zhuravlev, A. Yu. 1992. Irregular archaeocyaths. Cahiers de Paleontologie du CNRS.Google Scholar
Debrenne, F., Rozanov, A. Y., and Zhuravlev, A. Yu. 1990. Regular archaeocyaths. Cahiers de Paleontologie du CNRS.Google Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology 16:233236.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850852.2.3.CO;2>CrossRefGoogle Scholar
Duggins, D. O., Simenstad, C. A., and Estes, J. A. 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science 245:170173.CrossRefGoogle ScholarPubMed
Durham, J. W. 1974. Systematic position of Eldonia ludwigi Walcott. Journal of Paleontology 48:750755.Google Scholar
Dzik, J. 1978. Larval development of hyoliths. Lethaia 11:293299.CrossRefGoogle Scholar
Dzik, J. 1980. Ontogeny of Bactrotheca and related hyoliths. Geologiska Foreningens i Stockholm Forhandlingar 102:223233.CrossRefGoogle Scholar
Dzik, J. 1981a. Origin of the Cephalopoda. Acta Palaeontologica Polonica 26:161189.Google Scholar
Dzik, J. 1981b. Evolutionary relationships of Early Palaeozoic “cyclostomatous” Bryozoa. Palaeontology 24:827861.Google Scholar
Dzik, J. 1981c. Larval development, musculature, and relationships of Sinuitopsis and related Baltic bellerophonts. Norsk Geologisk Tidsskrift 61:111121.Google Scholar
Dzik, J. 1986. Chordate affinities of the conodonts. Pp. 241254in Hoffman, A. and Niteki, M. H., eds. Problematical fossil taxa. Oxford University Press.Google Scholar
Fischer, A. G. 1984. Biological innovations and the sedimentary record. Pp. 145157in Holland, H. D. and Trendall, A. F., eds. Patterns of change in earth evolution. Springer, Berlin.CrossRefGoogle Scholar
Fischer, A. G., and Arthur, M. A. 1977. Secular variations in the pelagic realm. Pp. 1950in Cook, H. E. and Enos, P., eds. Deep-water carbonate environments. Society of Economic Paleontologists and Mineralogists Special Publication 25.Google Scholar
Fortey, R. A. 1974. A new pelagic trilobite from the Ordovician of Spitzbergen, Ireland, and Utah. Palaeontology 17:111124.Google Scholar
Fortey, R. A. 1985. Pelagic trilobites as an example of deducing the life habits of extinct arthropods. Transactions of the Royal Society of Edinburgh 76:219230.CrossRefGoogle Scholar
Fortey, R. A., and Owens, R. M. 1990. Evolutionary radiations in the Trilobita. Pp. 139164in Taylor, and Larwood, 1990.Google Scholar
Fritz, M. A., and Howell, B. F. 1959. Cambrotrypa montanensis, a Middle Cambrian fossil of possible coral affinities. Proceedings of the Geological Association of Canada 11:8993.Google Scholar
Fryer, G. 1985. Structure and habit of living branchiopod crustaceans and their bearing on the interpretation of fossil forms. Transactions of the Royal Society of Edinburgh 76:103113.CrossRefGoogle Scholar
Gaines, S. D., and Roughgarden, J. 1987. Fish in offshore kelp forests affect recruitment to intertidal barnacle populations. Science 23:479481.CrossRefGoogle Scholar
Glaessner, M. F. 1978. The oldest foraminifera. Australian Bureau of Mines and Mineral Resources Geology and Geophysics Bulletin 192:6165.Google Scholar
Glaessner, M. F., and Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599628.Google Scholar
Glynn, P. W., ed. 1990. Global ecological consequences of the 1982-83 El Niño-Southern Oscillation. Elsevier, Amsterdam.Google Scholar
Guensberg, T. E., and Sprinkle, J. 1992. Rise of the echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology 20:407410.2.3.CO;2>CrossRefGoogle Scholar
Hallam, A., ed. 1977. Patterns of evolution, as illustrated by the fossil record. Elsevier, Amsterdam.Google Scholar
Hartman, W. D., Wendt, J. W., and Wiedenmayer, F. 1980. Living and fossil sponges: notes for a short course. Sedimenta 8:1274.Google Scholar
Haszprunar, G. 1988. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies 54:367441.CrossRefGoogle Scholar
Haszprunar, G. 1992. The first molluscs—small animals. Bollettino Zoologico 59:116.CrossRefGoogle Scholar
Highsmith, R. C. 1985. Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Marine Ecology Progress Series 25:169179.CrossRefGoogle Scholar
Huntley, M. E., Lopez, M. D. G., and Karl, D. M. 1991. Top predators in the Southern Ocean: a major leak in the biological carbon pump. Science 253:6466.CrossRefGoogle Scholar
Iams, W. I., and Stevens, R. K. 1988. Radiolaria and other siliceous microfossils of the Cow Head Group (Upper Cambrian-Middle Ordovician) of western Newfoundland. Geologica et Palaeontologica 22:192193.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990. The origin and diversification of major groups: environmental patterns and macroevolutionary lags. Pp. 1757in Taylor, and Larwood, 1990.Google Scholar
Jablonski, D., and Lutz, R. A. 1983. Larval ecology of marine benthic invertebrates; paleobiological implications. Biological Reviews 58:2189.CrossRefGoogle Scholar
James, N. P., and Kobluk, D. R. 1978. Lower Cambrian patch reefs and associated sediments: southern Labrador, Canada. Sedimentology 25:135.CrossRefGoogle Scholar
Jell, J. S. 1984. Cambrian cnidarians with mineralized skeletons. Palaeontographica Americana 54:105109.Google Scholar
Jell, P. A. 1974. Faunal provinces and possible planetary reconstruction of the Middle Cambrian. Journal of Geology 82:319350.CrossRefGoogle Scholar
Jell, P. A., and Jell, J. S. 1984. Early Middle Cambrian corals for western New South Wales. Alcheringa 1:181195.CrossRefGoogle Scholar
Jenkins, R. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology 11:336355.CrossRefGoogle Scholar
Jenkins, R. 1992. Functional and ecological aspects of Ediacaran assemblages. Pp. 131176in Lipps, and Signor, 1992.Google Scholar
Jensen, S. 1990. Predation by Early Cambrian trilobites on infaunal worms—evidence from the Swedish Mickwitzia Sandstone. Lethaia 23:2942.CrossRefGoogle Scholar
Kaesler, R. L. 1987. Superclass Crustacea. Pp. 241258in Boardman, R. S., Cheetham, A. H., and Rowell, A. J., eds. Fossil invertebrates. Blackwell Scientific, Boston.Google Scholar
Kirk, N. H. 1969. Some thoughts on the ecology, mode of life and evolution of the Graptolithina. Proceedings of the Geological Association of London 1659:273292.Google Scholar
Kirk, N. H. 1978. Mode of life of graptolites. Acta Palaeontologica Polonica 23:533555.Google Scholar
Kirk, N. H. 1980. Controlling factors in the evolution of graptolites. Geological Magazine 117:277284.CrossRefGoogle Scholar
Klapper, G., and Barrick, J. E. 1978. Conodont ecology: pelagic versus benthic. Lethaia 11:1523.CrossRefGoogle Scholar
Knoll, A. H. 1983. Biological interactions and Precambrian eukaryotes. Pp. 251283in Tevesz, and McCall, 1983.Google Scholar
Knoll, A. H. 1985. The distribution and evolution of microbial life in the late Proterozoic era. Annual Review of Microbiology 39:391417.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Walter, M. R. 1992. Latest Proterozoic stratigraphy and earth history. Nature (London) 356:673678.CrossRefGoogle ScholarPubMed
Kobluk, D. R. 1979. A new and unusual skeletal organism from the Lower Cambrian of Labrador. Canadian Journal of Earth Science 16:20402045.CrossRefGoogle Scholar
Kobluk, D. R. 1982. First record of Labyrinthus soraufi Kobluk from the southern Appalachians: Lower Cambrian Shady Dolomite, Virginia. Canadian Journal of Earth Science 19:10941098.CrossRefGoogle Scholar
Kobluk, D. R. 1984. A new compound skeletal organism from the Rosella Formation (Lower Cambrian), Atan Group, Cassiar Mountains, British Columbia. Journal of Paleontology 58:703708.Google Scholar
Kruse, P. D. 1990. Are archaeocyaths sponges, or are sponges archaeocyaths? Geological Society of Australia Special Publication 16:310323.Google Scholar
LaBarbera, M. 1977. Brachiopod orientation to water movement. 1. Theory, laboratory behavior, and field orientations. Paleobiology 3:270287.CrossRefGoogle Scholar
LaBarbera, M. 1984. Feeding currents and particle capture mechanisms in suspension feeding animals. American Zoologist 24:7184.CrossRefGoogle Scholar
Lafuste, J., Debrenne, F., Gandin, A., and Gravestock, D. 1991. The oldest tabulate coral and the associated Archaeocyatha, Lower Cambrian, Flinders Ranges, South Australia. Geobios 24:697718.CrossRefGoogle Scholar
Levinton, J. S. 1974. Trophic group and evolution in bivalve molluscs. Palaeontology 17:579585.Google Scholar
Linsley, R. M. 1977. Some “laws” of gastropod shell form. Paleobiology 3:196206.CrossRefGoogle Scholar
Linsley, R. M. 1978. Locomotion rates and shell form in the Gastropoda. Malacologia 17:193206.Google Scholar
Linsley, R. M., and Kier, W. M. 1984. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca. Malacologia 25:241254.Google Scholar
Lipps, J. H. 1970. Plankton evolution. Evolution 24:122.CrossRefGoogle ScholarPubMed
Lipps, J. H. 1985. Earliest Foraminifera and Radiolaria from North America: evolutionary and geological implications. Geological Society of America Abstracts with Programs 17:644645.Google Scholar
Lipps, J. H. 1986. Extinction dynamics in pelagic ecosystems. Pp. 87104in Elliott, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Lipps, J. H. 1992a. Proterozoic and Cambrian skeletonized protists. Pp. 237240in Schopf, and Klein, 1992.Google Scholar
Lipps, J. H. 1992b. Origin and early evolution of Foraminifera. Studies in benthic Foraminifera pp. 39. Tokai University Press, Tokai.Google Scholar
Lipps, J. H. 1992c. Stratigraphic distribution of skeletonized protists. P. 499in Schopf, and Klein, 1992.Google Scholar
Lipps, J. H., and Signor, P. W., eds. 1992. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Ludvigsen, R. 1974. A new Devonian acrotretid (Brachiopoda: Inarticulata) with unique protegular ultrastructure. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 3:133148.Google Scholar
Madsen, F. J. 1957. On Walcott's supposed Cambrian holothurians. Journal of Paleontology 31:281282.Google Scholar
Maliva, R. G., Knoll, A. H., and Siever, R. 1990. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4:519532.CrossRefGoogle Scholar
Marek, L., and Yochelson, E. L. 1976. Aspects of the biology of Hyolitha (Mollusca). Lethaia 9:6582.CrossRefGoogle Scholar
May, R. M. 1979. Ecological interactions in the Southern Ocean. Nature (London) 277:8689.CrossRefGoogle Scholar
McKerrow, W. S., ed. 1978. The ecology of fossils. M.I.T. Press, Cambridge.Google Scholar
McLeod, J. C. 1978. The oldest bryozoans: new evidence from the Early Ordovician. Science 200:771773.CrossRefGoogle ScholarPubMed
McMenamin, M. A. S. 1986. The garden of Ediacara. Palaios 1:178182.CrossRefGoogle Scholar
Mendelson, C. V., and Schopf, J. W. 1992. Proterozoic and Early Cambrian acritarchs. Pp. 219232in Schopf, and Klein, 1992.Google Scholar
Menge, B. A. 1992. Community regulation: under what conditions are bottom-up factors important on rocky shores? Ecology 73:755765.CrossRefGoogle Scholar
Menge, B. A., and Farrell, T. M. 1989. Community structure and interaction webs in shallow marine hard-bottom communities: tests of an environmental stress model. Advances in Ecological Research 19:189262.CrossRefGoogle Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, H. 1985a. A Silurian soft-bodied biota. Science 228:715717.CrossRefGoogle ScholarPubMed
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, H. 1985b. A new exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. Philosophical Transactions of the Royal Society of London B 311:7585.Google Scholar
Morris, N. J. 1990. Early radiation of the Mollusca. Pp. 7390in Taylor, and Larwood, 1990.Google Scholar
Müller, K. J. 1979. Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden. Lethaia 12:127.CrossRefGoogle Scholar
Müller, K. J. 1981. Zoological affinities of conodonts. Pp. W78W82in Robison, R. A., ed. Treatise on invertebrate paleontology, Part W Supplement 2, Conodonta. University of Kansas, Lawrence.Google Scholar
Müller, K. J., and Walossek, D. 1985. A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden. Transactions of the Royal Society of Edinburgh 76:161172.CrossRefGoogle Scholar
Müller, K. J., and Walossek, D. 1987. Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata 19:1124.CrossRefGoogle Scholar
Narbonne, G. M., Myrow, P., Landing, E., and Anderson, M. M. 1991. A chondrophorine (medusoid hydrozoan) from the basal Cambrian (Placentian) of Newfoundland. Journal of Paleontology 65:186191.CrossRefGoogle Scholar
Nazarov, B. B., and Ormiston, A. R. 1985. Evolution of the Radiolaria in the Paleozoic and its correlation with the development of other marine fossil groups. Senckenbergiana Lethaea 66:203215.Google Scholar
Nielsen, C. 1987. Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta Zoologica 68:205262.CrossRefGoogle Scholar
Norris, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia 22:381393.CrossRefGoogle Scholar
Öpik, A. A. 1979. Middle Cambrian agnostids: systematics and biostratigraphy. Bulletin of the Bureau of Mineral Resources, Geology and Geophysics 1-2:1188.Google Scholar
Pandolfi, J. M. 1989. Phylogenetic analysis of the early tabulate corals. Palaeontology 32:745764.Google Scholar
Paul, C. R. C. 1977. Evolution of primitive echinoderms. Pp. 123157in Hallam, 1977.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews 59:443481.CrossRefGoogle Scholar
Pojeta, J. Jr., and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early evolution of the phylum Mollusca. United States Geological Survey Professional Paper 968:188.Google Scholar
Pojeta, J. Jr., Gilbert-Tomlinson, J., and Shergold, J. H. 1977. Cambrian and Ordovician rostroconch molluscs from northern Australia. Bureau of Mineral Resources, Geology and Geophysics 171:154.Google Scholar
Popov, L. Yu. 1992. The Cambrian radiation of brachiopods. Pp. 392423in Lipps, and Signor, 1992.Google Scholar
Reid, R. G. B., McMahon, R. F., O'Foighil, D., and Finnigan, R. 1992. Anterior inhalent currents and pedal feeding in bivalves. Veliger 35:93104.Google Scholar
Reiswig, H. M. 1971a. In situ pumping activities of tropical Demospongiae. Marine Biology 9:3850.CrossRefGoogle Scholar
Reiswig, H. M. 1971b. Particle feeding in natural populations of three marine demosponges. Biological Bulletin 141:568591.CrossRefGoogle Scholar
Repina, L. N. 1972. Biogeography of Early Cambrian of Siberia according to trilobites. XXIII International Geological Congress, 1968, Proceedings of the International Paleontological Association, pp. 289300.Google Scholar
Retallack, G. J., and Feakes, C. R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science 235:6163.CrossRefGoogle ScholarPubMed
Rhodes, M. C., and Thayer, C. W. 1991. Mass extinctions: ecological selectivity and primary production. Geology 19:877880.2.3.CO;2>CrossRefGoogle Scholar
Rickards, R. B. 1975. Palaeoecology of the Graptolithina, an extinct class of the Hemichordata. Biological Reviews of the Cambridge Philosophical Society 50:397436.CrossRefGoogle Scholar
Rickards, R. B. 1977. Patterns of evolution in the graptolites. Pp. 333358in Hallam, 1977.Google Scholar
Rickards, R. B. 1988. Anachronistic, heraldic, and echoic evolution: new patterns revealed by extinct planktonic hemichordates. Pp. 211230in Larwood, G. P., ed. Extinction and survival in the fossil record. Clarendon, Oxford.Google Scholar
Rigby, S., and Rickards, B. 1989. New evidence for the life habit of graptoloids from physical modelling. Paleobiology 15:402413.CrossRefGoogle Scholar
Robison, R. A. 1972a. Mode of life of agnostid trilobites. International Geological Congress, 24th Session, Section 7:3344.Google Scholar
Robison, R. A. 1972b. Hypostoma of agnostid trilobites. Lethaia 5:239248.CrossRefGoogle Scholar
Roughgarden, J., Gaines, S., and Possingham, H. 1988. Recruitment dynamics in complex life cycles. Science 241:14601466.CrossRefGoogle ScholarPubMed
Rowell, A. J. 1986. The distribution and inferred larval dispersion of Rhondellina dorei: a new Cambrian brachiopod (Acrotretida). Journal of Paleontology 60:10561065.CrossRefGoogle Scholar
Rowell, A. J., McBride, D. J., and Palmer, A. R. 1973. Quantitative study of Trempealeauian (Latest Cambrian) trilobite distribution in North America. Geological Society of America Bulletin 84:34293442.2.0.CO;2>CrossRefGoogle Scholar
Rowell, A. J., Robison, R. A., and Strickland, D. K. 1982. Aspects of Cambrian agnostoid phylogeny and chronocorrelation. Journal of Paleontology 56:161182.Google Scholar
Rowland, S. M. 1984. Were there framework reefs in the Cambrian? Geology 12:181183.2.0.CO;2>CrossRefGoogle Scholar
Rowland, S. M., and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3:111135.CrossRefGoogle Scholar
Rozanov, A. Yu., and Zhuravlev, A. Yu. 1992. The Lower Cambrian fossil record of the Soviet Union. Pp. 205282in Lipps, and Signor, 1992.Google Scholar
Runnegar, B. 1982. Oxygen requirements, biology and phylogenetic significance of the Late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6:223239.CrossRefGoogle Scholar
Runnegar, B., and Pojeta, J. Jr. 1992. The earliest bivalves and their Ordovician descendants. American Malacological Bulletin 9:117122.Google Scholar
Runnegar, B., Pojeta, J. Jr., Morris, N. J., Taylor, J. D., Taylor, M. E., and McClung, G. 1975. Biology of the Hyolitha. Lethaia 8:181191.CrossRefGoogle Scholar
Sansom, I. J., Smith, M. P., Armstrong, H. A., and Smith, M. M. 1992. Presence of the earliest vertebrate hard tissues in conodonts. Science 256:13081311.CrossRefGoogle ScholarPubMed
Savarese, M. 1992. Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications. Paleobiology 18:464480.CrossRefGoogle Scholar
Schmalfuss, H. 1978. Constructional morphology of cuticular terraces in trilobites, with conclusions on synecological evolution. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 157:164168.Google Scholar
Schmalfuss, H. 1981. Structure, patterns and function of cuticular terraces in trilobites. Lethaia 14:331341.CrossRefGoogle Scholar
Schopf, J. W., and Klein, C., eds. 1992. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press.CrossRefGoogle Scholar
Schopf, J. W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F. 1973. On the development of metaphytes and metazoans. Journal of Paleontology 47:19.Google Scholar
Schram, F. R. 1982. The fossil record and the evolution of Crustacea. Pp. 93147in Abele, L. G., ed. The biology of Crustacea, Vol. 1. Systematics, the fossil record, and biogeography. Academic Press, New York.Google Scholar
Scrutton, C. T. 1979. Early fossil cnidarians. Pp. 161207in House, M. R., ed. The origin of major invertebrate groups. Academic Press, London.Google Scholar
Scrutton, C. T. 1984. Origin and early evolution of tabulate corals. Palaeontographica Americana 54:110118.Google Scholar
Seilacher, A. 1964. Biogenic sedimentary structures. Pp. 296313in Imbrie, J. and Newell, N. D., eds. Approaches to paleoecology. John Wiley and Sons, New York.Google Scholar
Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? Pp. 159168in Holland, H. D. and Trendall, A. F., eds. Patterns of change in earth evolution. Springer, Berlin.CrossRefGoogle Scholar
Seilacher, A. 1985. Trilobite palaeobiology and life habits. Transactions of the Royal Society of Edinburgh 76:231237.CrossRefGoogle Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229239.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1991. Diversity in the Phanerozoic oceans: a partisan review. Pp. 210236in Dudley, E. C., ed. The unity of evolutionary biology. Proceedings of the Fourth International Congress on Systematic and Evolutionary Biology. Dioscorides Press, Portland.Google Scholar
Shear, W. A. 1991. The early development of terrestrial ecosystems. Nature (London) 351:283289.CrossRefGoogle Scholar
Sheehan, P. W. 1985. Reefs are not so different—they follow the evolutionary pattern of level-bottom communities. Geology 13:4649.2.0.CO;2>CrossRefGoogle Scholar
Sheehan, P. W., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.2.0.CO;2>CrossRefGoogle Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Review of Ecology and Systematics 21:509539.CrossRefGoogle Scholar
Signor, P. W. 1991. Early Cambrian biogeography and the prehistory of early skeletogenous animals. Pp. 801810in Cooper, J. D. and Stevens, C. H., eds. Paleozoic paleogeography of the western United States. Pacific Section Society of Economic Paleontologists and Mineralogists 67.Google Scholar
Signor, P. W. 1992. Evolutionary and tectonic implications of Early Cambrian faunal endemism. Pp. 113in Hall, C. A. Jr., Doyle-Jones, V., and Widawski, B., eds. The history of water. White Mountain Research Station Symposium, Vol. 4.Google Scholar
Signor, P. W., and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Siveter, D.J. 1984. Ecology of Silurian ostracodes. Special Papers in Palaeontology 32:7185.Google Scholar
Siveter, D. J., Vannier, J. M. C., and Palmer, D. 1991. Silurian myodocopes: pioneer pelagic ostracodes and the chronology of an ecological shift. Journal of Micropaleontology 10:151172.CrossRefGoogle Scholar
Smith, A. B., and Jell, P. A. 1990. Cambrian edrioasteroids from Australia, and the origin of starfishes. Memoirs of the Queensland Museum 28:715778.Google Scholar
Smith, M. P., Briggs, D. E. G., and Aldridge, R. J. 1987. A conodont animal from the lower Silurian of Wisconsin, USA, and the apparatus architecture of panderodontid conodonts. Pp. 91104in Aldridge, R. J., ed. Paleobiology of conodonts. Ellis Horwood Limited, Chichester.Google Scholar
Sprinkle, J. 1977. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young University Geology Studies 23:6173.Google Scholar
Sprinkle, J. 1980. An overview of the fossil record. Pp. 1526in Broadhead, T. W. and Waters, J. A., eds. Echinoderms—notes for a short course. University of Tennessee Studies in Geology 3.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata. Pp. 375398in Lipps, and Signor, 1992.Google Scholar
Stanley, G. D. Jr. 1986. Chondrophorine hydrozoans as problematic fossils. Pp. 6886in Hoffman, A. and Nitecki, M. H., eds. Problematic fossil taxa. Oxford University Press.Google Scholar
Steele, J. H. 1974. The structure of marine ecosystems. Harvard University Press.CrossRefGoogle Scholar
Stitt, J. H. 1976. Functional morphology and life habits of the Late Cambrian trilobite Steopilus pronus Raymond. Journal of Paleontology 50:561576.Google Scholar
Strathmann, R. R. 1978a. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32:894906.CrossRefGoogle ScholarPubMed
Strathmann, R. R. 1978b. Progressive vacating of adaptive types during the Phanerozoic. Evolution 32:907914.CrossRefGoogle ScholarPubMed
Strathmann, R. R. 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16:339361.CrossRefGoogle Scholar
Strathmann, R. R. 1987. Larval feeding. Pp. 465550in Giese, A. C., Pearce, J. S., and Pearse, V. B., eds. Reproduction of marine invertebrates. Vol. IX. General aspects, seeking unity in diversity. Blackwell Scientific, Cambridge.Google Scholar
Sweet, W. C. 1988. The Conodonta, morphology, taxonomy, paleoecology, and evolutionary history of a long-extinct animal phylum. Clarendon, Oxford.Google Scholar
Szaniawski, H. 1987. Preliminary structural comparisons of protoconodont, paraconodont, and euconodont elements. Pp. 3547in Aldridge, R. J., ed. Paleobiology of conodonts. Ellis Horwood Limited, Chichester.Google Scholar
Talent, J. A. 1988. Organic reef-building: episodes of extinction and symbiosis? Senckenbergiana Lethaea 69:315368.Google Scholar
Tappan, H. 1968. Primary production: isotopes, extinctions and the atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology 4:187210.CrossRefGoogle Scholar
Tappan, H. 1970. Phytoplankton abundance and Late Paleozoic extinctions: a reply. Palaeogeography, Palaeoclimatology, Palaeoecology 8:4966.CrossRefGoogle Scholar
Tappan, H. 1982. Extinction or survival: selectivity and causes of Phanerozoic crises. Geological Society of America Special Paper 190:265276.CrossRefGoogle Scholar
Tappan, H., and Loeblich, A. R. Jr. 1973a. Smaller protistan evidence and explanation of the Permian-Triassic crisis. Canadian Society of Petroleum Geologists Memoir 2:465480.Google Scholar
Tappan, H., and Loeblich, A. R. Jr. 1973b. Evolution of the oceanic plankton. Earth Science Reviews 9:207240.CrossRefGoogle Scholar
Tappan, H., and Loeblich, A. R. Jr. 1988. Foraminiferal evolution, diversification, and extinction. Journal of Paleontology 62:695714.Google Scholar
Taylor, P. D., and Larwood, G. P., eds. 1990. Major evolutionary radiations. Systematics Association Special Volume 42:139164.Google Scholar
Tevesz, M. J. S., and McCall, P. L., eds. 1983. Biotic interactions in Recent and fossil benthic communities. Plenum Press, New York.CrossRefGoogle Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science 203:458461.CrossRefGoogle ScholarPubMed
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625in Tevesz, and McCall, 1983.Google Scholar
Thayer, C. W. 1986. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology 12:161174.CrossRefGoogle Scholar
Thorson, G. 1950. Reproduction and larval ecology of marine bottom invertebrates. Biological Reviews 25:145.CrossRefGoogle ScholarPubMed
Urbanek, A. 1986. The enigma of graptolite ancestry: lesson from a phylogenetic debate. Pp. 184226in Hoffman, A. and Niteki, M. H., eds. Problematical fossil taxa. Oxford University Press.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Englewood Cliffs.Google Scholar
Valentine, J. W. 1992. Dickinsonia as a polypoid organism. Paleobiology 18:378382.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 1983. Larval adaptations and patterns of brachiopod diversity in time and space. Evolution 37:10521061.CrossRefGoogle Scholar
Valentine, J. W., Awramik, S. M., Signor, P. W., and Sadler, P. M. 1991. The biological explosion at the Precambrian-Cambrian boundary. Evolutionary Biology 25:279356.Google Scholar
Vannier, J., and Abe, K. 1992. Recent and early Palaeozoic myodocope ostracodes: functional morphology, phylogeny, distribution and lifestyles. Palaeontology 35:485517.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245278.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and adaptation. Harvard University Press, Cambridge.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press.CrossRefGoogle Scholar
Vermeij, G. J. 1990. The origin of skeletons. Palaios 4:585589.CrossRefGoogle Scholar
Vidal, G., and Knoll, A. H. 1982. Radiations and extinctions of plankton in the Late Precambrian and Early Cambrian. Nature (London) 297:5760.CrossRefGoogle Scholar
Vidal, G., and Moczydlowska, M. 1992. Patterns of phytoplankton radiation across the Precambrian-Cambrian boundary. Journal of the Geological Society, London 149:647654.CrossRefGoogle Scholar
von Bitter, P. H., and Ludvigsen, R. 1979. Formation and function of protegular pitting in some North American acrotretid brachiopods. Palaeontology 22:705722.Google Scholar
Wade, M. 1971. Bilateral Precambrian chondrophores from the Ediacara fauna, South Australia. Proceedings of the Royal Society of Victoria 84:183188.Google Scholar
Walcott, C. D. 1911. Middle Cambrian holothurians and medusae. Smithsonian Miscellaneous Collections 57:4168.Google Scholar
Walker, K. R. 1972. Trophic analysis: a method for studying the function of ancient communities. Journal of Paleontology 46:8293.Google Scholar
Walsh, J. J. 1988. On the nature of continental shelves. Academic Press, San Diego.Google Scholar
Whittington, H. B. 1966. Phylogeny and distribution of Ordovician trilobites. Journal of Paleontology 40:696737.Google Scholar
Wilkinson, C. R. 1978. Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Marine Biology 49:161167.CrossRefGoogle Scholar
Wilkinson, C. R. 1983. Net primary productivity in coral reef sponges. Science 219:210212.CrossRefGoogle ScholarPubMed
Wilkinson, C. R. 1987. Interocean differences in size and nutrition of coral reef sponge populations. Science 236:16541657.CrossRefGoogle ScholarPubMed
Wilkinson, C. R., and Fay, P. 1979. Nitrogen fixation in coral reef sponges with symbiotic Cyanobacteria. Nature (London) 279:527529.CrossRefGoogle Scholar
Williams, A., and Hurst, J. M. 1977. Brachiopod evolution. Pp. 79121in Hallam, 1977.Google Scholar
Wilson, M. A., Palmer, T. J., Guensburg, T. E., Fenton, C. D., and Kaufman, L. E. 1992. The development of an Early Ordovician hardground community in response to rapid sea-floor calcite precipitation. Lethaia 25:1934.CrossRefGoogle Scholar
Wood, R., Zhuravlev, A. Yu., and Debrenne, F. 1992. Functional biology and ecology of Archaeocyatha. Palaios 7:131156.CrossRefGoogle Scholar
Zhang, W.-T. 1987. World's oldest Cambrian trilobites from eastern Yunnan. Stratigraphy and palaeontology of systemic boundaries in China. Precambrian-Cambrian Boundary 1:116.Google Scholar
Zhuravlev, A. Yu. 1986. Evolution of archaeocyaths and palaeobiogeography of the Early Cambrian. Geological Magazine 123:377385.CrossRefGoogle Scholar