Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:13:10.571Z Has data issue: false hasContentIssue false

A phylogenetic and morphologic context for the radiation of an endemic fauna in a long-lived lake: Corbulidae (Bivalvia; Myoida) in the Miocene Pebas Formation of western Amazonia

Published online by Cambridge University Press:  08 April 2016

Laurie C. Anderson
Affiliation:
Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803. E-mail: [email protected]
Frank P. Wesselingh
Affiliation:
Naturalis, Post Office Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected]
Joseph H. Hartman
Affiliation:
Department of Geology and Geological Engineering, University of North Dakota, 81 Cornell Street Stop 8358, Grand Forks, North Dakota 58202. E-mail: [email protected]

Abstract

The Corbulidae are one of a handful of a primarily marine bivalve clades that exhibit a remarkable radiation, marked by increased species richness and divergent morphologies, within a long-lived lake. For corbulids, this diversification occurred within the lower to middle Miocene Pebas Formation of western Amazonia. Only one taxon associated with this radiation (Anticorbula) remains extant. We conducted a series of phylogenetic analyses to characterize diversification of Corbulidae within the Pebas Formation and relate that diversification to geologically older freshwater corbulids from the Paleocene Fort Union Formation of the northern Great Plains (United States). We used these results, as well as a quantitative examination of morphospace occupation, to infer whether Pebasian corbulids represent a true species flock, and whether the lacustrine system represented by the Pebas Formation represents a cradle of, or reservoir for, freshwater corbulid diversity. We conducted two sets of phylogenetic analyses using shell morphology characters. A genus-level data set incorporated type species of freshwater corbulid genera, any Paleocene representatives of these genera, and selected brackish and marine corbulid genera. A species-level analysis added all described freshwater corbulid taxa to the genus-level matrix. Our results were highly resolved (few most-parsimonious trees), but not particularly robust (low branch support). For the genus-level matrix, we used a taxon jackknife procedure to explore the effects of taxon sampling on tree stability and topology. Jackknife results recover a subclade of freshwater taxa (including both Anticorbula and Pachydon species and the Paleocene Ostomya sp.) in 92.4% of trees, although placement of this subclade across the ingroup varies, as do the topologic positions of other freshwater species. Freshwater and marine corbulids also are morphologically distinct from each other, a factor that likely reduced the robustness of our phylogenetic results. By combining these results with paleoecologic, stratigraphic, and morphologic data, we infer that freshwater corbulids arose once within the family, prior to the Cenozoic, with three distinct freshwater lineages present at their first appearance in the late Paleocene of North America. Within the Miocene Pebas system of South America, we reconstruct supralimital morphologic evolution within three lineages as freshwater taxa became variously adapted to the fluid, dysoxic muds characterizing lake-bottom facies representative of the Pebas lacustrine system. In addition, corbulids apparently successfully coped with high predation pressures from co-occurring shell-crushing predators. Finally, we consider that freshwater Corbulidae were primarily fluvial taxa throughout their geologic history, with a relatively ephemeral radiation within the Pebasian lake system, thus making the Pebasian system a cradle of diversity for several corbulid lineages.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adamkewicz, S. L., Harasewych, M. G., Blake, J., Saudek, D., and Bult, C. J. 1997. A molecular phylogeny of the bivalve mollusks. Molecular Biology and Evolution 14:619629.Google Scholar
Albertelli, G., Chiantore, M., Harriague, A. Covazzi, Danovaro, R., and Della Croce, N. 1999. Community experiments using benthic chambers. 2. Meio- and macrofaunal community structure and metabolism. Chemistry and Ecology 16:5166.Google Scholar
Albrecht, C., Schultheiß, R., Kevrekidis, T., Streit, B., and Wilke, T. 2007. Invaders or endemics? Molecular phylogenetics, biogeography and systematics of Dreissena in the Balkans. Freshwater Biology 52:15251536.Google Scholar
Anderson, J. S. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50:170193.Google Scholar
Anderson, L. C. 1992. Naticid gastropod predation on corbulid bivalves: effects of physical factors, morphological features, and statistical artifacts. Palaios 7:602620.Google Scholar
Anderson, L. C., and Roopnarine, P. D. 2003. Evolution and phylogenetic relationships of Neogene Corbulidae (Bivalvia; Myoidea) of tropical America. Journal of Paleontology 77:10861102.Google Scholar
Anderson, L. C., Hartman, J. H., and Wesselingh, F. 2006. Close evolutionary affinities between freshwater corbulid bivalves from the Neogene of western Amazonia and Paleogene of the northern Great Plains, USA. Journal of South American Earth Sciences 21:2848.Google Scholar
Anderson, L. C., Dettman, D., and Hartman, J. 2007. Freshwater Corbulidae (Bivalvia): using isotopic evidence to uncover ancient origins of freshwater invasion. Geological Society of America Abstracts with Programs 39:305.Google Scholar
Antoine, P.-O., Salas-Gismondi, R., Baby, P., Benammi, M., Brusset, S., de Franceschi, D., Espurt, N., Goillot, C., Pujos, F., Tejada, J., and Urbina, M. 2007. The Middle Miocene (Laventan) Fitzcarrald Fauna, Amazonian Peru. In Díaz-Martínez, E., and Rábano, I., eds. Fourth European meeting on the palaeontology and stratigraphy of Latin America. Cuadernos del Museo Geominero 8:1924. Instituto Geológico y Minero de España, Madrid.Google Scholar
Audzijonyte, A., Daneliya, M. E., Mugue, N., and Väinölä, R. 2008. Phylogeny of Paramysis (Crustacea: Mysida) and the origin of Ponto-Caspian endemic diversity: resolving power from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 46:738759.Google Scholar
Belt, E.S., Tibert, N. E., Curran, H. A., Diemer, J. A., Hartman, J. H., Kroeger, T. J., and Harwood, D. M. 2005. Evidence for marine influence on a low-gradient coastal plain: ichnology and invertebrate paleontology of the lower Tongue River Member (Fort Union Formation, middle Paleocene), western Williston Basin, U.S.A. Rocky Mountain Geology 40:124.Google Scholar
Bernard, F. 1895. Première note sur le développement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société Géologique de France, 3d series 23:104154.Google Scholar
Bernard, F. 1897. Quatrième et dernière note sur le développement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société Géologique de France, 3d series 25:559566.Google Scholar
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795803.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295304.Google Scholar
Brito, P. M., and Deynat, P. P. 2004. Freshwater stingrays from the Miocene of South America with comments on the rise of potamotrygonids (Batoidea, Myliobatiformes). Pp. 575582 in Arratia, G., Wilson, M. V. H., and Cloutier, R., eds. Recent advances in the origin and early radiation of vertebrates. Dr. Friedrich Pfeil, Munich.Google Scholar
Butler, R. J., and Upchurch, P. 2007. Highly incomplete taxa and the phylogenetic relationships of the theropod dinosaur Juravenator starki . Journal of Vertebrate Paleontology 27:253256.Google Scholar
Campbell, D. C. 2000. Molecular evidence on the evolution of the Bivalvia. In Harper, E. M., Taylor, J. D., and Crame, J. A., eds. The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177:3146.Google Scholar
Canapa, A., Barucca, M., Marinelli, A., and Olmo, E. 2001. A molecular phylogeny of Heterodonta (Bivalvia) based on small ribosomal subunit RNA sequences. Molecular Phylogenetics and Evolution 21:156161.Google Scholar
Carlson, S. J., and Fitzgerald, P. C. 2008. Sampling taxa, estimating phylogeny and inferring macroevolution: an example from Devonian terebratulide brachiopods. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 98:311325.Google Scholar
Carlton, J. T., Thompson, J. K., Schemel, L. E., and Nichols, F. H. 1990. Remarkable invasion of San Francisco Bay (California, USA) by the Asian clam Potamocorbula amurensis. I. Introduction and dispersal. Marine Ecology Progress Series 66:8194.Google Scholar
Carter, R. M. 1967. On the nature and definition of the lunule, escutcheon and corcelet in the Bivalvia. Proceedings of the Malacological Society of London 37:243263.Google Scholar
Carvalho, M. R. de, Maisey, J. G., and Grande, L. 2004. Freshwater stingrays of the Green River Formation of Wyoming (Early Eocene), with the description of a new genus and species and an analysis of its phylogenetic relationships (Chondrichthyes: Myliobatiformes). Bulletin of the American Museum of Natural History 284:1136.Google Scholar
Cherven, V. B., and Jacob, A. R. 1985. Evolution of Paleogene depositional systems, Williston Basin, in response to global sea level changes. Pp. 127170 in Flores, R. M. and Kaplan, S. S., eds. Cenozoic paleogeography of the west-central United States. SEPM Rocky Mountain Section, Denver.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Cobbett, A., Wilkinson, M., and Wills, M. A. 2007. Fossils impact as hard as living taxa in parsimony analyses of morphology. Systematic Biology 56:753766.Google Scholar
Cohen, A. S., and Johnston, M. R. 1987. Speciation in brooding and poorly dispersing lacustrine organisms. Palaios 2:426435.Google Scholar
Cuezzo, M. G. 2003. Phylogenetic analysis of the Camaenidae (Mollusca: Stylommatophora) with special emphasis on American taxa. Zoological Journal of the Linnean Society 138:449476.Google Scholar
Cvancara, A. M. 1966. Revision of the fauna of the Cannonball Formation (Paleocene) of North and South Dakota. Contributions from the Museum of Paleontology, University of Michigan 20:277374.Google Scholar
De Cauwer, G. 1985. Gastropod predation on corbulid bivalves: paleoecology or taphonomy? Annales de la Société Royale Zoologique de Belgique 115:183196.Google Scholar
Dreyer, H., Steiner, G., and Harper, E. M. 2003. Molecular phylogeny of Anomalodesmata (Mollusca: Bivalvia) inferred from 18S rRNA sequences. Zoological Journal of the Linnean Society 139:229246.Google Scholar
Erwin, D. H. 2007. Disparity: morphologic pattern and developmental context. Palaeontology 50:5773.Google Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783791.Google Scholar
Fischer, P.-H. 1963. Corbules fossiles perforées par des gastéropodes prédateurs. Journal de Conchyliologie 103:2931.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Fürsich, F. T., Heinze, M., and Jaitly, A. K. 2000. Contributions to the Jurassic of Kachchh, western India. VIII. The bivalve fauna. Part IV. Subclass Heterodonta. Beringeria 27:63146.Google Scholar
Giokas, S. 2000. Congruence and conflict in Albinaria (Gastropoda, Clausiliidae): a review of morphological and molecular phylogenetic approaches. Belgian Journal of Zoology 130(Suppl. 1):93100.Google Scholar
Giribet, G. 2003. Stability in phylogenetic formulations and its relationship to nodal support. Systematic Biology 52:554564.Google Scholar
Giribet, G., and Wheeler, W. 2002. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121:271324.Google Scholar
Glaubrecht, M., and Strong, E. E. 2007. Ancestry to an endemic radiation in Lake Tanganyika? Evolution of the viviparous gastropod Potadomoides Leloup, 1953 in the Congo River system (Caenogastropoda, Cerithioidea, Paludomidae). Biological Journal of the Linnean Society 92:367401.Google Scholar
Glaubrecht, M., and von Rintelen, T. 2008. The species flocks of lacustrine gastropods: Tylomelania on Sulawesi as models in speciation and adaptive radiation. Hydrobiologia 615:181199.Google Scholar
Gomez, A. A., Jaramillo, C. A., Parra, M., and Mora, A. 2009. Huesser Horizon: a lake and a marine incursion in northwestern South America during the early Miocene. Palaios 24:199210.Google Scholar
Good, S. C. 1987. Mollusc-based interpretations of lacustrine paleoenvironments of the Sheep Pass Formation (Latest Cretaceous to Eocene) of east central Nevada. Palaios 2:467478.Google Scholar
Goodwin, D. H., Anderson, L. C., and Roopnarine, P. D. 2008. Evolutionary origins of novel conchologic growth patterns in tropical American corbulid bivalves. Evolution and Development 10:642656.Google Scholar
Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology 47:917.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1).Google Scholar
Hanley, J. H. 1977. Lithostratigraphic relations, nonmarine Mollusca, and depositional environments of a portion of the Green River and Wasatch Formations south of the Rock Springs Uplift, Sweetwater County, Wyoming, with appendices of measured stratigraphic sections. U.S. Geological Survey Open-File Report 77–588:1223.Google Scholar
Harasewych, M. G. 1984. Comparative anatomy of four primitive muricacean gastropods: implications for trophonine phylogeny. American Malacological Bulletin 3:1126.Google Scholar
Harper, E. M. 1994. Are conchiolin sheets in corbulid bivalves primarily defensive? Palaeontology 37:551578.Google Scholar
Harper, E. M., Palmer, T. J., and Hudson, J. D. 2002. The Middle Jurassic bivalve ‘Cuspidaria’ ibbetsoni: a corbulid not a septi-branch. Palaeontology 45:759769.Google Scholar
Hartman, J. H. 1976. Uppermost Cretaceous and Paleocene nonmarine Mollusca of eastern Montana and southwestern North Dakota. . University of Minnesota, Minneapolis.Google Scholar
Hartman, J. H. 1993. An unusual occurrence of Paleocene nonmarine mollusks on the east flank of the Cedar Creek anticline, Fallon County, Montana. Pp. 2223 in Kihm, A. J. and Hartman, J. H., eds. The Marshall Lambert Symposium. North Dakota Geological Society, Pioneer Trails Museum, June 19–20, 1993, Bowman, N.D. Google Scholar
Harzhauser, M., and Mandic, O. 2004. The muddy bottom of Lake Pannon—a challenge for dreissenid settlement (Late Miocene; Bivalvia). Palaeogeography, Palaeoclimatology, Palaeoecology 204:331352.Google Scholar
Harzhauser, M., and Mandic, O. 2008. Neogene lake systems of central and south-eastern Europe: faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology 260:417434.Google Scholar
Hausdorf, B., Röpstorf, P., and Riedel, F. 2003. Relationships and origin of endemic Lake Baikal gastropods (Caenogastropoda: Rissooidea) based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26:435443.Google Scholar
Hauswald, A.-K., Albrecht, C., and Wilke, T. 2008. Testing two contrasting evolutionary patterns in ancient lakes: species flock versus species scatter in valvatid gastropods of Lake Ohrid. Hydrobiologia 615:169179.Google Scholar
Hermsen, E. J., and Hendricks, J. R. 2008. W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Annals of the Missouri Botanical Garden 95:72100.Google Scholar
Hillis, D. M., and Huelsenbeck, J. P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity 83:189195.Google Scholar
Holmes, S. P., and Miller, N. 2006. Aspects of the ecology and population genetics of the bivalve Corbula gibba . Marine Ecology Progress Series 315:129140.Google Scholar
Hoorn, C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology 105:267309.Google Scholar
HRS-Brenko, M. 1981. Population studies of Corbula gibba (Olivi), Bivalvia, Corbulidae, in the Northern Adriatic Sea. Journal of Molluscan Studies 47:1724.Google Scholar
HRS-Brenko, M. 2006. The basket shell, Corbula gibba Olivi, 1792 (bivalve mollusks) as a species resistant to environmental disturbances: a review. Acta Adriatica 47:4964.Google Scholar
Jensen, J. N. 1990. Increased abundance and growth of the suspension-feeding bivalve Corbula gibba in a shallow part of the eutrophic Limfjord, Denmark. Netherlands Journal of Sea Research 27:101108.Google Scholar
Jonsson, P. R., André, C., and Lindegarth, M. 1991. Swimming behaviour of marine bivalve larvae in a flume boundary-layer flow: evidence for near-bottom confinement. Marine Ecology Progress Series 79:6776.Google Scholar
Källersjö, M., Farris, J. S., Kluge, A. G., and Bult, C. 1992. Skewness and permutation. Cladistics 8:275287.Google Scholar
Kardon, G. 1998. Evidence from the fossil record of an antipredatory exaptation: conchiolin layers in corbulid bivalves. Evolution 52:6879.Google Scholar
Kearney, M. 2002. Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. Systematic Biology 51:369381.Google Scholar
Kearney, M., and Clark, J. M. 2003. Problems due to missing data in phylogenetic analyses including fossils: a critical review. Journal of Vertebrate Paleontology 23:263274.Google Scholar
Kelley, P. H. 1988. Predation by Miocene gastropods of the Chesapeake Group: stereotyped and predictable. Palaios 3:436448.Google Scholar
Ki⊘rboe, T. and M⊘hlenberg, F. 1981. Particle selection in suspension-feeding bivalves. Marine Ecology Progress Series 5:291296.Google Scholar
Koblmüller, S., Sefe, K. M., and Sturmbauer, C. 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615:520.Google Scholar
Korniushin, A. V., and Glaubrecht, M. 2003. Novel reproductive modes in freshwater clams: brooding and larval morphology in Southeast Asian taxa of Corbicula (Mollusca, Bivalvia, Corbiculidae). Acta Zoologica 84:293315.Google Scholar
Lamprell, K., Healy, J. M., and Dyne, G. R. 1998. Superfamily Myoidea. Pp. 363367 in Beesely, P. L., Ross, G. J. B., and Wells, A., eds. Mollusca: the southern synthesis. Fauna of Australia 5, Part A. CSIRO Publishing, Melbourne.Google Scholar
Lande, E. 1975. The distribution of pelecypods in Borgenfjorden North Tröndelag Norway. Norwegian Journal of Zoology 23:5566.Google Scholar
La Rocque, A. 1960. The molluscan faunas of the Flagstaff Formation of central Utah. Geological Society of America Memoir 78:1100.Google Scholar
Larsen, J. B., Frischer, M. E., Ockelmann, K. W., Rasmussen, L. J., and Hansen, B. W. 2007. Temporal occurrence of planktotrophic bivalve larvae identified morphologically and by single step nested multiplex PCR. Journal of Plankton Research 29:423436.Google Scholar
Leistikow, A., and Janssen, R. 1997. A record of the bivalve Guianadesma sinuosum Morrison from the central Amazon basin (Bivalvia: Corbulidae). Basteria 61:1722.Google Scholar
Lewy, Z., and Samtleben, C. 1979. Functional morphology and palaeontological significance of the conchiolin layers in corbulid pelecypods. Lethaia 12:341351.Google Scholar
Lovejoy, N. R., Albert, J. S., and Crampton, W. G. R. 2006. Miocene marine incursions and marine/freshwater transitions: evidence from Neotropical fishes. Journal of South American Earth Sciences 21:513.Google Scholar
Lundberg, J. G., Sullivan, J. P., Rodiles-Hernández, R., and Hendrickson, D. A. 2007. Discovery of African roots for the Mesoamerican Chiapas catfish, Lacantunia enigmatica, requires an ancient intercontinental passage. Proceedings of the Academy of Natural Sciences of Philadelphia 156:3953.Google Scholar
Mackie, G. L., and Schloesser, D. W. 1996. Comparative biology of zebra mussels in Europe and North America: an overview. American Zoologist 36:244258.Google Scholar
Malaquias, M. A. E., and Reid, D. G. 2008. Systematic revision of the living species of Bullidae (Mollusca: Gastropoda: Cephalaspidea), with a molecular phylogenetic analysis. Zoological Journal of the Linnean Society 153:453543.Google Scholar
Manos, P. S., Soltis, P. S., Soltis, D. E., Manchester, S. R., Oh, S.-H., Bell, C. D., Dilcher, D. L., and Stone, D. E. 2007. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology 56:412430.Google Scholar
Marijnissen, S. A. E., Michel, E., Daniels, S. R., Erpenbeck, D., Menken, S. B. J., and Schram, F. R. 2006. Molecular evidence for recent divergence of Lake Tanganyika endemic crabs (Decapoda: Platythelphusidae). Molecular Phylogenetics and Evolution 40:628634.Google Scholar
Martens, K. 1997. Speciation in ancient lakes. Trends in Ecology and Evolution 12:177182.Google Scholar
Meek, F. B. 1876. A report on the invertebrate Cretaceous and Tertiary fossils of the Upper Missouri Country. Pp. 1629 in Hayden, F. V., ed. Report of the United States Geological Survey of the Territories 9. Government Printing Office, Washington, D.C. Google Scholar
Michel, E. 1994. Why snails radiate: a review of gastropod evolution in long-lived lakes, both recent and fossil. In Martens, K., Goddeeris, B., and Coulter, G., eds. Speciation in ancient lakes. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 44:285317.Google Scholar
Miller, D. J. 1999. Making the most of your shells: constructional and microarchitectural characters in muricid gastropod systematics. Geological Society of America Abstracts with Programs 31:A42.Google Scholar
Miller, J. A., and Hormiga, G. 2004. Clade stability and the addition of data: a case study from erigonine spiders (Araneae: Linyphiidae, Erigoninae). Cladistics 20:385442.Google Scholar
Mohammed, A., and Agard, J. 2004. The occurrence of NADPH-ferrihemoprotein reductase in Corbula caribea, from a natural oil seep at La Brea, Trinidad. Marine Pollution Bulletin 48:784789.Google Scholar
Monsch, K. A. 1998. Miocene fish faunas from the northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology 143:3150.Google Scholar
Morrison, J. 1943. A new type of fresh water clam from British Guiana. Nautilus 57:4653.Google Scholar
Morton, B. 1990. The biology and functional morphology of Corbula crassa (Bivalvia: Corbulidae) with special reference to shell structure and formation. Pp. 10551073 in Morton, B., ed. The marine flora and fauna of Hong Kong and southern China II, Vol. 3. Behaviour, morphology, physiology and pollution. Hong Kong University Press, Hong Kong.Google Scholar
Myers, G. S. 1960. The endemic fish fauna of Lake Lanao, and the evolution of higher taxonomic categories. Evolution 14:323333.Google Scholar
Nicolini, M. H., and Penry, D. L. 2000. Spawning, fertilization, and larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California. Pacific Science 54:377388.Google Scholar
Nuttall, C. P. 1990. A review of the Tertiary non-marine molluscan faunas of the Pebasian and other inland basins of north-western South America. Bulletin of the British Museum of Natural History (Geology) 45:165371.Google Scholar
Parchaso, F., and Thompson, J. K. 2002. Influence of hydrologic processes on reproduction of the introduced bivalve Potamocorbula amurensis in northern San Francisco Bay, California. Pacific Science 56:329345.Google Scholar
Park, L. E., and Gierlowski-Kordesch, E. H. 2007. Paleozoic lake faunas: establishing aquatic life on land. Palaeogeography, Palaeoclimatology, Palaeoecology 249:160179.Google Scholar
Pearson, T. H. 1971. The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. III. The effect on the benthic fauna of the introduction of pulp mill effluent. Journal of Experimental Marine Biology and Ecology 6:211233.Google Scholar
Pearson, T. H. 1972. The effect of industrial effluent from pulp and paper mills on the marine benthic environment. Proceedings of the Royal Society of London B 180:469485.Google Scholar
Pilsbry, H. A., and Olsson, A. A. 1935. Tertiary fresh-water mollusks of the Magdalena embayments, Colombia. Proceedings of the Academy of Natural Sciences Philadelphia 87:739.Google Scholar
Purchon, R. D. 1990. Stomach structure, classification and evolution of the Bivalvia. Pp. 7382 in Morton, B., ed. The Bivalvia: proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge. Hong Kong University Press, Hong Kong.Google Scholar
Ramirez, R., Paredes, C., and Arenas, J. 2003. Moluscos del Perú. Revista de Biología Tropical 51(Suppl. 3):225284.Google Scholar
Rogers, R. R., 1998. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River formations, Montana: non-marine response to the Claggett and Bearpaw marine cycles. Journal of Sedimentary Research 68:615631.Google Scholar
Roopnarine, P. D. 2001. A history of diversification, extinction, and invasion in tropical America as derived from species-level phylogenies of chionine genera (Family Veneridae). Journal of Paleontology 75:644657.Google Scholar
Salzburger, W. 2009. The interaction of sexually and naturally selected traits in the adaptive radiation of cichlid fishes. Molecular Ecology 18:169185.Google Scholar
Salzburger, W., and Meyer, A. 2004. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften 91:227290.Google Scholar
Savazzi, E. 1999. Boring, nestling, and tube-dwelling bivalves. Pp. 205237 in Savazzi, E., ed. Functional morphology of the invertebrate skeleton. Wiley, Chichester, U.K. Google Scholar
Schneider, J. A., and Carter, J. G. 2001. Evolution and phylogenetic significance of cardiodean shell microstructure (Mollusca, Bivalvia). Journal of Paleontology 75:607643.Google Scholar
Schön, I., and Martens, K. 2004. Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes: a review. Organisms, Diversity and Evolution 4:137156.Google Scholar
Schultheiß, R., Albrecht, C., Bößneck, U., and Wilke, T. 2008a. The neglected side of speciation in ancient lakes: phylogeography of an inconspicuous mollusk taxon in lakes Ohrid and Prespa. Hydrobiologia 615:141156.Google Scholar
Schultheiß, R., Van Bocxlaer, B., Wilke, T., and Albrecht, C. 2008b. Old fossils—young species: evolutionary history of an endemic gastropod assemblage in Lake Malawi. Proceedings of the Royal Society of London B 276:28372846.Google Scholar
Simone, L. R. L. 1999. Anatomy and systematics of Anticorbula fluviatilis (H. Adams, 1860) (Bivalvia: Lyonsiidae) from the Amazon Basin, Brazil and Peru. Nautilus 113:4855.Google Scholar
Simone, L. R. L. 2006. Land and freshwater molluscs of Brazil. Museu de Zoologia Universidade de São Paulo, São Paulo.Google Scholar
Solis-Weiss, V., Aleffi, F., Bettoso, N., Rossin, P., Orel, G., Fonda-Umani, S. 2004. Effects of industrial and urban pollution on the benthic macrofauna of the Bay of Muggia (industrial port of Trieste, Italy). Science of the Total Environment 328:247263.Google Scholar
Starobogatov, Y. I. 1992. Morphological basis for phylogeny and classification of Bivalvia. Ruthenica 2:125.Google Scholar
Steiner, G., and Hammer, S. 2000. Molecular phylogeny of the Bivalvia inferred from 18S rDNA sequences with particular reference to the Pteriomorphia. In Harper, E. M., Taylor, J. D., and Crame, J. A., eds. The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177:1129.Google Scholar
Strong, E. E., Gargominy, O., Ponder, W. F., and Bouchet, P. 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595:149166.Google Scholar
Swofford, D. L. 2002. PAUP. Phylogenetic analysis using parsimony ( and other methods), Version 4.b10. Sinauer, Sunderland, Mass. Google Scholar
Taylor, J. D., Williams, S. T., Glover, E. A., and Dyal, P. 2007. A molecular phylogeny of heterodont bivalves (Mollusca: Bivalvia: Heterodonta): new analyses of 18S and 28S rRNA genes. Zoologica Scripta 36:587606.Google Scholar
Therriault, T. W., Docker, M. F., Orlova, M. I., Heath, D. D., and MacIsaac, H. J. 2004. Molecular resolution of the family Dreissenidae (Mollusca: Bivalvia) with emphasis on Ponto-Caspian species, including first report of Mytilopsis leucophaeata in the Black Sea basin. Molecular Phylogenetics and Evolution 30:479489.Google Scholar
Van Damme, D., and Pickford, M. 2003. The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithioidea) of the Albertine Rift Valley (Uganda-Congo) and their bearing on the origin and evolution of the Tanganyikan thalassoid malacofauna. Hydrobiologia 498:183.Google Scholar
Vermeij, G. J., and Carlson, S. J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology 26:1946.Google Scholar
Vermeij, G. J., and Covich, A. P. 1978. Coevolution of freshwater gastropods and their predators. American Naturalist 112:833843.Google Scholar
Vermeij, G. J., and Wesselingh, F. P. 2002. Neogastropod molluscs from the Miocene of western Amazonia, with comments on marine to freshwater transitions in molluscs. Journal of Paleontology 76:265270.Google Scholar
Vokes, H. E. 1945. Supraspecific groups of the pelecypod family Corbulidae. Bulletin of the American Museum of Natural History 86:132.Google Scholar
von Rintelen, T., Wilson, A. B., Meyer, A., and Glaubrecht, M. 2004. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proceedings of the Royal Society of London B 271:25412549.Google Scholar
Wagner, P. J. 2001. Gastropod phylogenetics: progress, problems and implications. Journal of Paleontology 75:11281140.Google Scholar
Waller, T. R. 1998. Origin of the molluscan class Bivalvia and a phylogeny of major groups. Pp. 145 in Johnston, P. A. and Haggart, J. W., eds. Bivalves: an eon of evolution. University of Calgary Press, Calgary.Google Scholar
Weigelt, M., and Rumohr, H. 1986. Effects of wide-range oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983. Meeresforschung 31:124136.Google Scholar
Werner, I., Clark, S. L., and Hinton, D. E. 2003. Biomarkers aid understanding of aquatic organism responses to environmental stressors. California Agriculture 57:110115.Google Scholar
Wesselingh, F. P. 2006a. Evolutionary ecology of the Pachydontinae (Bivalvia, Corbulidae) in the Pebas lake/wetland system (Miocene, western Amazonia). Scripta Geologica 133:395417.Google Scholar
Wesselingh, F. P. 2006b. Molluscs from the Miocene Pebas Formation of Peruvian and Colombian Amazonia. Scripta Geologica 133:19290.Google Scholar
Wesselingh, F. P. 2007. Long-lived lake molluscs as island faunas: a bivalve perspective. Pp. 275314 in Renema, W., ed. Biogeography, time, and place: distributions, barriers, and islands. Springer, Berlin.Google Scholar
Wesselingh, F. P., and Macsotay, O. 2006. Pachydon hettneri (Anderson, 1928) as indicator for Caribbean-Amazonian lowland connections during the Early-Middle Miocene. Journal of South American Earth Sciences 21:4953.Google Scholar
Wesselingh, F. P., and Ramos, M. I. F. 2010. Development of Amazonian aquatic invertebrate faunas (Mollusca, Ostracoda) in the past 30 million years. Pp. 302316 in Hoorn, C. and Wesselingh, F., eds. Amazonia, landscape and species evolution. Wiley-Blackwell, Oxford.Google Scholar
Wesselingh, F. P., and Salo, J. A. 2006. A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica 133:439458.Google Scholar
Wesselingh, F. P., Hoorn, M. C., Guerrero, J., Räsänen, M. E., Pittmann, L. Romero, and Salo, J. 2006. The stratigraphy and regional structure of Miocene deposits in western Amazonia (Peru, Colombia and Brazil), with implications for late Neogene landscape evolution. Scripta Geologica 133:291322.Google Scholar
West, K., and Cohen, A. 1994. Predator-prey coevolution as a model for the unusual morphologies of the crabs and gastropods of Lake Tanganyika. In Martens, K., Goddeeris, B., and Coulter, G., eds. Speciation in ancient lakes. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 44:267283.Google Scholar
West, K., and Cohen, A. 1996. Shell microstructure of gastropods from Lake Tanganyika, Africa: adaptation, convergent evolution, and escalation. Evolution 50:672681.Google Scholar
West, K., Cohen, A., and Baron, M. 1991. Morphology and behavior of crabs and gastropods from Lake Tanganyika, Africa: implications for lacustrine predator-prey coevolution. Evolution 45:589607.Google Scholar
Wiens, J. J. 2003. Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? Journal of Vertebrate Paleontology 23:297310.Google Scholar
Wilkinson, M. 1995. Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology 44:501514.Google Scholar
Wilkinson, M. 2003. Missing entries and multiple trees: instability, relationships, and support in parsimony analysis. Journal of Vertebrate Paleontology 23:311323.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.Google Scholar
Wilson, A. B., Glaubrecht, M., and Meyer, A. 2004. Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proceedings of the Royal Society of London B 271:529536.Google Scholar
Yin, J., and Fürsich, F. T. 1991. An endemic brackish water faunule from the Middle Jurassic of southern Qinghai province, China. Paläontologische Zeitschrift 65:105117.Google Scholar
Yin, J., and Fürsich, F. T. 1992. A new name for the Middle Jurassic bivalve genus Husdonella Yin & Fürsich 1991. Paläontologische Zeitschrift 66:435.Google Scholar
Yin, J., Fürsich, F. T., and Werner, W. 1995. Reconstruction of palaeosalinity using carbon isotopes and benthic associations: a comparison. Geologische Rundschau 84:223236.Google Scholar
Zwickl, D. J., and Hillis, D. M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51:588598.Google Scholar
Supplementary material: File

Anderson et al. supplementary material

Supplementary Material

Download Anderson et al. supplementary material(File)
File 533.5 KB
Supplementary material: File

Anderson et al. supplementary material

Supplementary Material

Download Anderson et al. supplementary material(File)
File 520 KB
Supplementary material: File

Anderson et al. supplementary material

Supplementary Material

Download Anderson et al. supplementary material(File)
File 516.7 KB