Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T04:43:26.323Z Has data issue: false hasContentIssue false

Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella

Published online by Cambridge University Press:  08 February 2016

Kuo-Yen Wei
Affiliation:
Marine Science Institute and Department of Geological Sciences, University of California, Santa Barbara, California 93106
James P. Kennett
Affiliation:
Marine Science Institute and Department of Geological Sciences, University of California, Santa Barbara, California 93106

Abstract

Substantial geographic coverage in paleontological study is essential in testing evolutionary models of phyletic gradualism and punctuated equilibrium. We present a multivariate morphometric study of the late Neogene planktonic foraminiferal clade Globoconella using specimens from four Deep Sea Drilling Project sites (DSDP 284, 207A, 208, and 588) along a latitudinal traverse in the southwest Pacific.

During the Late Miocene (7 Ma to 5 Ma), populations of the ancestral species Globorotalia (Globoconella) conomiozea formed a geographic cline showing continuous morphological variation from the temperate sites (DSDP 284 and 207A) to the warm subtropical sites (DSDP 208 and 588). Populations living to the south had higher conical angle and fewer chambers in the final whorl compared to the northern populations. Nevertheless, populations across the entire cline exhibited a coherent, directional trend towards having larger conical angle and fewer chambers through time. At the Miocene/Pliocene boundary, the intensification of the Tasman Front (Subtropical Divergence) possibly isolated the peripheral populations in the warm subtropics from the central stocks of the temperate water masses. The evolutionary trends became decoupled: the central populations gradually lost their keel and transformed into G. (G.) sphericomiozea, while the peripheral populations in the warm subtropical areas retained their keel and evolved into a flattened species, G. (G.) pliozea.

The gradual transformation of G. (G.) conomiozea terminalis (a form retaining a keel) into G. (G.) sphericomiozea (a form lacking a keel) occurred during an interval of about 0.2 m.y., with all measured morphologic variables showing continuous and steady changes. The evolution of the central populations follows the model of phyletic gradualism. In peripheral populations, the origin of the descendant species G. (G.) pliozea from the ancestor G. (G.) conomiozea terminalis occurred very rapidly within an interval of less than 0.01 m.y. The population size of G. (G.) pliozea was small at the incipient stage at about 5.05 Ma, but increased rapidly to become dominant during the next 0.2 m.y. when the ancestral species G. (G.) conomiozea terminalis became locally extinct. Following speciation, G. (G.) pliozea exhibited morphological stasis for about 0.6 m.y., until the central stock form G. (G.) puncticulata migrated back to the warm subtropics; during the next 0.5 m.y. of their sympatry, there is no sign of hybridization between these two sister species. The evolution of G. (G.) pliozea follows the model of punctuated equilibrium.

The evolution of the Globoconella clade shows both phyletic gradualism and punctuated equilibrium. These two “alternative” evolutionary models complement each other rather than being mutually exclusive. Both models are indispensable towards providing a complete picture of the evolution of Globoconella.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, J. C., Lawrence, M. W., and Nilsson, C. S. 1980. Observations of the Tasman Front. Journal of Physical Oceanography 10:18541869.2.0.CO;2>CrossRefGoogle Scholar
Barton, C. E. and Bloemendal, J. 1986. Paleomagnetism of sediments collected during Leg 90, southwest Pacific. Pp. 12731316. In Kennett, J. P., and von der Borch, C. C. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 90. U.S. Government Printing Office; Washington, D.C.Google Scholar
Bell, M. A., Baumgartner, J. V., and Olson, E. V. 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11:258271.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., and Van Couvering, J. A. 1985. Neogene geochronology and chronostratigraphy. Pp. 211260. In Snelling, N. J. (ed.), The Chronology of the Geological Record. Geological Society of London Memoir 10; Cambridge, London.Google Scholar
Boucot, A. J. 1982. Ecophenotypic or genotypic. Nature 296:609.CrossRefGoogle Scholar
Burns, R. E., et al. 1973. Initial Reports of the Deep Sea Drilling Project Volume 21. U.S. Government Printing Office; Washington, D.C. 931 pp.CrossRefGoogle Scholar
Chaline, J. and Laurin, B. 1986. Phyletic gradualism in a European Plio-Pleistocene Mimomys lineage (Arvicolidae, Rodentia). Paleobiology 12:203216.CrossRefGoogle Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.CrossRefGoogle Scholar
Dowsett, H. J. 1988. Diachrony of late Neogene microfossils in the southwest Pacific Ocean: application of the graphic correlation. Paleoceanography 3:209222.CrossRefGoogle Scholar
Eade, J. V. 1973. Geographical distribution of living planktonic Foraminifera in the Southwest Pacific. Pp. 249256. In Fraser, R. (ed.), Oceanography of the South Pacific 1972. New Zealand National Commission for UNESCO; Wellington, New Zealand.Google Scholar
Edwards, A. R. 1975. Southwest Pacific Cenozoic paleoceanography and an integrated Neogene paleocirculation model. Pp. 667684. In Andrews, J. E., Packham, G., et al. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 30. U.S. Government Printing Office; Washington, D.C.Google Scholar
Edwards, A. R. and Perch-Nielson, K. 1975. Calcareous nannofossil from the southern southwest Pacific, DSDP Leg 29. Pp. 469539. In Kennett, J. P., Houtz, R. E., et al. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 29. U.S. Government Printing Office; Washington, D.C.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper, and Company; San Francisco, California.Google Scholar
Elmstrom, K. M. 1985. Late Neogene Paleoceanography of the Southwest Pacific: from oxygen and carbon and planktonic forminiferal faunal evidence of DSDP Sites 588, 590A, and 284. Unpublished Master's thesis. University of Rhode Island; Kingston, Rhode Island. 192 pp.Google Scholar
Elmstrom, K. M. and Kennett, J. P. 1986. Late Neogene paleoceanographic evolution of Site 590: Southwest Pacific. Pp. 13611381. In Kennett, J. P., and von der Borch, C. C., et al. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 90. U.S. Government Printing Office; Washington, D.C.Google Scholar
Fortey, R. A. 1985. Gradualism and punctuated equilibria as competing and complementary theories. Pp. 1728. In Cope, J. C. W., and Skelton, P. W. (eds.), Evolutionary Case Histories from the Fossil Record. Special Papers in Palaeontology 33. The Palaeontological Association; London.Google Scholar
Gingerich, P. D. 1979. The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. Pp. 4177. In Cracraft, J., and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press; New York.CrossRefGoogle Scholar
Gingerich, P. D. 1984. Punctuated equilibria—Where is the evidence? Systematic Zoology 33:335338.CrossRefGoogle Scholar
Ginzburg, L. R. and Rost, J. D. 1982. Are punctuations' artifacts of time-scale? Nature 296:610.CrossRefGoogle Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.CrossRefGoogle Scholar
Gould, S. J. and Eldredge, N. 1986. Punctuated equilibrium at the third stage. Systematic Zoology 35:143148.CrossRefGoogle Scholar
Haldane, J. B. S. 1957. The cost of natural selection. Journal of Genetics 55:511522.CrossRefGoogle Scholar
Heath, R. A. 1985. A review of the physical oceanography of the seas around New Zealand—1982. New Zealand Journal of Marine and Freshwater Research 19:79124.CrossRefGoogle Scholar
Hecht, M. K. and Hoffman, H. 1986. Why not neo-Darwinism? A critique of paleobiological challenges. Oxford Survey in Evolutionary Biology 3:147.Google Scholar
Hodell, D. A., Elmstrom, K. M., and Kennett, J. P. 1986. Latest Miocene benthic 180 changes, global ice volume, sea level, and the “Messinian salinity crisis.” Nature 320:411414.CrossRefGoogle Scholar
Hodell, D. A. and Kennett, J. P. 1986. Late Miocene–early Pliocene stratigraphy and paleoceanography of the south Atlantic and southwest Pacific oceans: a synthesis. Paleoceanography 1:285311.CrossRefGoogle Scholar
Hoffman, A. 1982. Punctuated versus gradual mode of evolution: a reconsideration. Evolutionary Biology 15:411436.CrossRefGoogle Scholar
Hoffman, A. 1983. Paleobiology at the crossroads: a critique of some modern paleobiological research programs. Pp. 241271. In Grene, M. (ed.), Dimensions of Darwinism. Cambridge University Press; Cambridge, United Kingdom.Google Scholar
Hoffman, A. 1984. Species selection. Evolutionary Biology 18:120.Google Scholar
Hornibrook, N. de B. 1981. Globorotalia (planktonic Foraminiferida) in the late Pliocene and early Pleistocene of New Zealand. New Zealand Journal of Geology and Geophysics 24:263292.CrossRefGoogle Scholar
Hornibrook, N. de B. 1982. Late Miocene to Pleistocene Globorotalia (Foraminiferida) from Deep Sea Drilling Project Leg 29, Site 284, Southwest Pacific. New Zealand Journal of Geology and Geophysics 25:8399.CrossRefGoogle Scholar
Hornibrook, N. de B. 1984. Globorotalia (planktonic Foraminifera) at the Miocene/Pliocene boundary in New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 46:107117.CrossRefGoogle Scholar
Johnson, J. G. 1982. Occurrence of phyletic gradualism and punctuated equilibria through geologic time. Journal of Paleontology 56:13291331.Google Scholar
Keigwin, L. D. and Shackleton, N. J. 1980. Uppermost Miocene carbon isotope stratigraphy of a piston core in the equatorial Pacific. Nature 284:613614.CrossRefGoogle Scholar
Kellogg, D. E. 1983. Morphologic change in radiolarian lineages from deep sea cores: implications for macroevolution. Paleobiology 9:355362.CrossRefGoogle Scholar
Kennett, J. P. 1966. The Globorotalia crassaformis bioseries in north Westland and Marlborough, New Zealand. Micropaleontology 12:235245.CrossRefGoogle Scholar
Kennett, J. P. 1973. Middle and late Cenozoic planktonic foraminiferal biostratigraphy of the southwest Pacific—DSDP Leg 21. Pp. 575640. In Burns, R. E., et al. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 21. U.S. Government Printing Office; Washington, D.C.Google Scholar
Kennett, J. P. and Srinivasan, M. S. 1983. An Atlas of Neogene Planktonic Foraminifera: phylogenetic approach. Hutchinson and Ross; Stroudsburg, Pennsylvania. 253 pp.Google Scholar
Kennett, J. P. and Vella, P. 1975. Late Cenozoic planktonic foraminifera and paleoceanography at DSDP Site 284 in the cool subtropical South Pacific. Pp. 769799. In Kennett, J. P., Houtz, R. E., et al. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 29. U.S. Government Printing Office; Washington, D.C.Google Scholar
Kennett, J. P. and von der Borch, C. C. 1986. Southwest Pacific Cenozoic paleoceanography. Pp. 14931517. In Kennett, J. P., and von der Borch, C. C., et al. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 90. U.S. Government Printing Office; Washington, D.C.Google Scholar
Kennett, J. P. and Watkins, N. D. 1974. Late Miocene–early Pliocene paleomagnetic stratigraphy, paleoclimatology, and biostratigraphy in New Zealand. Bulletin of Geological Society of America 85:13851398.2.0.CO;2>CrossRefGoogle Scholar
Knox, G. A. 1970. Biological oceanography of the south Pacific. Pp. 155182. In Wooster, W. S. (ed.), Scientific Exploration of the South Pacific. National Academy of Sciences; Washington, D.C.Google Scholar
Koch, P. L. 1986. Clinal geographic variation in mammals: implications for the study of chronoclines. Paleobiology 12:269281.CrossRefGoogle Scholar
Lazarus, D. B. 1983. Speciation in pelagic Protista and its study in the planktonic microfossil record: a review. Paleobiology 9:327340.CrossRefGoogle Scholar
Lazarus, D. B. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatium. Paleobiology 12:175189.CrossRefGoogle Scholar
Lazarus, D. B. and Prothero, D. R. 1984. The role of stratigraphic and morphologic data in phylogeny. Journal of Paleontology 58:163172.Google Scholar
Levinton, J. S. 1983. Stasis in progress: the empirical basis of macroevolution. Annual Review of Ecology and Systematics 14:103137.CrossRefGoogle Scholar
Lister, A. 1984. Evolutionary case histories from the fossil record. Nature 309:114115.CrossRefGoogle Scholar
Lohman, W. H. 1986. Calcareous nannoplankton biostratigraphy of the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean, Deep Sea Drilling Project Leg 90: Neogene and Quaternary. Pp. 763793. In Kennett, J. P., and von der Borch, C. C. (eds.), Initial Reports of the Deep Sea Drilling Project Volume 90. U.S. Government Printing Office; Washington, D.C.Google Scholar
Lohmann, G. P. and Malmgren, B. A. 1983. Equatorward migration of Globorotalia truncatulinoides ecophenotypes through the Late Pleistocene: gradual evolution or ocean change? Paleobiology 9:414421.CrossRefGoogle Scholar
Loutit, T. S. 1981. Late Miocene paleoclimatology: subantarctic water mass, Southwest Pacific. Marine Micropaleontology 6:127.CrossRefGoogle Scholar
Loutit, T. S. and Kennett, J. P. 1979. Application of carbon isotope stratigraphy to Late Miocene shallow marine sections, New Zealand. Science 204:11961199.CrossRefGoogle Scholar
Loutit, T. S., Pisias, N. G., and Kennett, J. P. 1983. Pacific Miocene carbon isotope stratigraphy using benthonic foraminifera. Earth and Planetary Science Letter 66:4862.CrossRefGoogle Scholar
Malmgren, B. A. 1979. Multivariate normality tests of planktonic foraminiferal data. Mathematical Geology 11:285297.CrossRefGoogle Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage: DSDP Site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Malmgren, B. A. and Kennett, J. P. 1982. The potential of morphometrically based phylo-zonation: application of a late Cenozoic foraminiferal lineage. Marine Micropaleontology 7:285296.CrossRefGoogle Scholar
Malmgren, B. A. and Kennett, J. P. 1983. Phyletic gradualism in the Globorotalia inflata lineage vindicated. Paleobiology 9:427428.CrossRefGoogle Scholar
Mayr, E. 1942. Systematics and the Origin of Species. Columbia University Press; New York. 334 pp.Google Scholar
Mayr, E. 1982a. Questions concerning speciation. Nature 296:609.CrossRefGoogle Scholar
Mayr, E. 1982b. Speciation and macroevolution. Evolution 36:11191132.CrossRefGoogle ScholarPubMed
McInnes, B. A. 1965. Globorotalia miozea Finlay (sensu lato) as an ancestor of Globorotalia inflata d'Orbigny. New Zealand Journal of Geology and Geophysics 8:104108.CrossRefGoogle Scholar
Raup, D. M. and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7:200215.CrossRefGoogle Scholar
Schopf, T. J. M. 1984. Rates of evolution and the notion of living fossils. Annual Review of Earth and Planetary Sciences 12:245292.CrossRefGoogle Scholar
Scott, G. H. 1979. The late Miocene to early Pliocene history of Globorotalia miozea plexus from Blind River, New Zealand. Marine Micropaleontology 4:341361.CrossRefGoogle Scholar
Scott, G. H. 1982. Tempo and stratigraphic record of speciation in Globorotalia puncticulata. Journal of Foraminiferal Research 12:112.CrossRefGoogle Scholar
Scott, G. H. 1983a. Biostratigraphy and history of Upper Miocene–Pliocene Globorotalia, South Atlantic and West Pacific. Marine Micropaleontology 7:369383.CrossRefGoogle Scholar
Scott, G. H. 1983b. Divergences and phyletic transformations in the history of the Globorotalia inflata lineage. Paleobiology 9:422426.CrossRefGoogle Scholar
Srinivasan, M. S. and Kennett, J. P. 1981a. A review of Neogene planktonic foraminiferal biostratigraphy: applications in the equatorial and South Pacific. Pp. 395432. In Warme, J. E., and Douglas, R. G. (eds.), The Deep Sea Drilling Project: a decade of progress. SEPM Special Publication No. 32; Tulsa, Oklahoma.CrossRefGoogle Scholar
Srinivasan, M. S. and Kennett, J. P. 1981b. Neogene planktonic foraminiferal biostratigraphy: equatorial to subantarctic, South Pacific. Marine Micropaleontology 6:499534.CrossRefGoogle Scholar
Stanton, B. R. 1979. The Tasman Front. New Zealand Journal of Marine and Freshwater Research 13:201214.CrossRefGoogle Scholar
Stanton, B. R. 1981. An oceanographic survey of the Tasman Front. New Zealand Journal of Marine and Freshwater Research 15:289297.CrossRefGoogle Scholar
Stebbins, G. and Ayala, F. J. 1981. Is a new evolutionary synthesis necessary? Science 213:967971.CrossRefGoogle ScholarPubMed
Walters, R. 1965. The Globorotalia zealandica and G. miozea lineage. New Zealand Journal of Geology and Geophysics 8:109127.CrossRefGoogle Scholar
Wei, K.-Y. 1987. Multivariate morphometric differentiation of chronospecies in the late Neogene planktonic foraminiferal lineage Globoconella. Marine Micropaleontology 12:183202.CrossRefGoogle Scholar
Wei, K.-Y. In prep. Allometry and heterochrony in the Pliocene-Pleistocene planktonic foraminiferal clade Globoconella, DSDP 588, southwest Pacific.Google Scholar
Williamson, P. G. 1981. Paleontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature 293:437443.CrossRefGoogle Scholar
Williamson, P. G. 1982. Williamson replies. Nature 296:611612.CrossRefGoogle Scholar
Wold, S. 1976. Pattern recognition by means of disjoint principal components models. Pattern Recognition 8:127139.CrossRefGoogle Scholar
Wold, S. 1978. Cross validatory estimation of the number of components in factor and principal component models. Technometrics 20:397406.CrossRefGoogle Scholar
Wold, S. and Sjöstrom, M. 1977. SIMCA: a model for analyzing chemical data in terms of similarity and analogy. Pp. 243252. In Kowalski, B. R. (ed.), Chemometrics: theory and application. American Chemical Society. Symposium Series No. 52.CrossRefGoogle Scholar