Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T17:59:01.224Z Has data issue: false hasContentIssue false

Phanerozoic development of tiering in soft substrata suspension-feeding communities

Published online by Cambridge University Press:  08 April 2016

David J. Bottjer
Affiliation:
Department of Geological Sciences, University of Southern California, Los Angeles, California 90089-0741
William I. Ausich
Affiliation:
Department of Geology and Mineralogy, The Ohio State University, Columbus, Ohio 43210

Abstract

Tiering is the vertical distribution of organisms within the benthic boundary layer. Primary tierers are suspension-feeding organisms with a body or burrow that intersects the seafloor. Secondary tierers are suspension-feeders that maintain positions above or below the sediment-water interface as either epizoans on primary tierers and plants or by living in the burrows of primary tierers. Different primary tierers from soft substrata, nonreef, shallow subtidal shelf and epicontinental sea settings have had different tiering histories, resulting largely from contrasting constructional and phylogenetic constraints. Primary colonial tierers generally occupied lower epifaunal tiers during the Paleozoic and Mesozoic, but since the Cretaceous they have been dominant in the highest tier (+ 20 to +50 cm). Primary echinoderm tierers have been almost exclusively epifaunal, and from the Paleozoic through the Jurassic they were present throughout the epifaunal tiered structure. Although primary bivalve tierers have been both epifaunal and infaunal, they have occupied only lower epifaunal tiers, whereas they have adapted to all levels of the infaunal tiering structure, particularly from the late Paleozoic through the Recent. Brachiopods have lived primarily in tiers directly above or below the water-sediment interface and have not contributed significantly to tiering complexity.

Of the numerous physical and biotic processes and constraints that affect shallow marine benthos, a few have contributed more significantly to changes in tiering patterns. Trends for increasing body size could have accounted for most of the development of tiering complexity up to +50 cm and down to –12 cm. Development of tiering above +50 cm could have been due to processes which would have yielded greater feeding capability, such as competitive interactions for a place from which to feed or adaptations to velocity gradients in the hydrodynamic boundary layer. The most significant process for development of infauanl tiering below –12 cm appears to have been as an adaptive response for predator avoidance.

Unlike infaunal tiering, which never declined after it developed, epifaunal tiering has undergone a general reduction twice. Reduction in epifaunal tiering at the end of the Paleozoic appears to have been the result of the mass extinction at this time, whereas long-term biotic processes seem to have been more important for the tiering decline at the end of the Mesozoic. Tiering structure through the Phanerozoic was thus produced through interactions of a number of physical and biotic factors, tempered by constructional and phylogenetic constraints of each primary tierer group.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. R. 1977. Generic longevity of articulate brachiopods in relation to the mode of stabilization on the substrate. Palaeogeogr., Palaeoclimatol., Palaeoecol. 21:209226.Google Scholar
Aller, R. C. and Dodge, R. E. 1974. Animal-sediment relations in a tropical lagoon, Discovery Bay, Jamaica. J. Mar. Res. 32:209232.Google Scholar
Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia. 19:3351.Google Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. J. Paleontol. 54:273288.Google Scholar
Ausich, W. I. 1983. Component concept for the study of paleocommunities with an example from the Early Carboniferous of southern Indiana (U.S.A.). Palaeogeogr., Palaeoclimatol., Palaeoecol. 44:251282.Google Scholar
Ausich, W. I. and Bottjer, D. J. 1982. Tiering in suspension feeding communities on soft substrata throughout the Phanerozoic. Science. 216:173174.Google Scholar
Ausich, W. I. and Bottjer, D. J. 1985a. Phanerozoic tiering in suspension feeding communities on soft substrata: implications for diversity. Pp. 255274. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macro-evolution. Princeton Univ. Press and Pacific Div. Am. Ass. Adv. Sci.; Princeton and San Francisco.Google Scholar
Ausich, W. I. and Bottjer, D. J. 1985b. Echinoderm role in the history of Phanerozoic tiering in suspension feeding communities. Pp. 311. In: Keegan, B., ed. Proceedings of the Fifth International Echinoderm Conference, Galway. Balkema Press; Rotterdam.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3:152167.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Bokuniewicz, H. J., Gordon, R. B., and Rhoads, D. C. 1975. Mechanical properties of the sediment-water interface. Mar. Geol. 18:263278.Google Scholar
Bottjer, D. J. 1985. Trace fossils and paleoenvironments of two Arkansas Upper Cretaceous discontinuity surfaces. J. Paleontol. 59:282298.Google Scholar
Bottjer, D. J. and Ausich, W. I. 1982. Tiering and sampling requirements in paleocommunity reconstruction. Proc. 3d N. Am. Paleontol. Conv. 1:5759.Google Scholar
Bottjer, D. J. and Ausich, W. I. 1985. Comment on “Abundant and diverse early Paleozoic infauna indicated by the stratigraphic record.” Geology. 13:8385.Google Scholar
Bottjer, D. J., Sheehan, P. M., Miller, M. F., Byers, C. W., and Hicks, D. O. 1984. Thalassinoides in the Paleozoic. Geol. Soc. Am. Abstr. with Prog. 16:451.Google Scholar
Bottjer, D. J. and Jablonski, D. 1986. Onshore-offshore trends in the evolution of benthic macroinvertebrates: role of mass extinction. 4th N. Am. Paleontol. Conv., Abstr. p. A5.Google Scholar
Brasier, M. D. 1975. An outline history of seagrass communities. Palaeontology. 18:681702.Google Scholar
Brett, C. E. 1978. Description and paleoecology of a new Lower Silurian camerate crinoid. J. Paleontol. 52:91103.Google Scholar
Bromley, R. G. 1970. Borings as trace fossils and Entobia cretacea Portlock, as an example. Pp. 4990. In: Crimes, T. P. and Harper, J. C., eds. Trace Fossils. Seel House; Liverpool.Google Scholar
Bromley, R. G. and Ekdale, A. A. 1984. Chondrites: a trace fossil indicator of anoxia in sediments. Science. 224:872874.CrossRefGoogle ScholarPubMed
Bromley, R. G. and Ekdale, A. A. 1986. Composite ichnofabrics and tiering of burrows. Geol. Mag. 123:5965.CrossRefGoogle Scholar
Buss, L. W. and Jackson, J. B. C. 1981. Planktonic food availability and suspension feeder abundance: evidence for in situ depletion. J. Exp. Mar. Biol. Ecol. 49:151161.Google Scholar
Conway Morris, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Ann. Rev. Ecol. Syst. 10:327349.Google Scholar
Cook, P. L. 1977. Colony-wide currents in living Bryozoa. Cah. Biol. Mar. 18:3147.Google Scholar
Cox, L. R., Newell, N. D., Boyd, D. W., Branson, C. C., Casey, R., Chavan, A., Coogan, A. H., Deschaseaux, C., Fleming, C. A., Haas, F., Hertlein, L. G., Kauffman, E. G., Keen, A. M., LaRocque, A., McAlester, A. L., Moore, R. C., Nuttall, C. P., Perkins, B. F., Puri, H. S., Smith, L. A., Soot-Ryen, T., Stenzel, H. B., Trueman, E. R., Turner, R. D., and Weir, J. 1969. Bivalvia. 1224 pp. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part N, Mollusca 6. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Crame, J. A. 1981. Ecological stratification in the Pleistocene coral reefs of the Kenya coast. Palaeontology. 24:609646.Google Scholar
DeRidder, C. and Lawrence, J. M. 1982. Food and feeding mechanisms: Echinoidea. Pp. 57115. In: Jangoux, M. and Lawrence, J. M., eds. Echinoderm Nutrition. Balkema; Rotterdam.Google Scholar
Derstler, K. 1984. Taxonomic effects of the Cambro-Ordovician event. Geol. Soc. Am. Abstr. with Prog. 16:486.Google Scholar
Droser, M. L. and Bottjer, D. J. 1985a. The infaunal biological benthic boundary layer (BBBL): early Phanerozoic history from the Great Basin, western North America. Soc. Econ. Paleontol. Mineral. Midyr. Mtg. Abstr. 2:26.Google Scholar
Droser, M. L. and Bottjer, D. J. 1985b. Early Phanerozoic development of infaunal metazoans: trace fossil evidence from the Great Basin. Geol. Soc. Am. Abstr. with Progr. 17:567.Google Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian) in southern Ontario, Canada. Roy. Ont. Mus. Life Sci. Contr. 137:182.Google Scholar
Ettensohn, F. R. 1984. Unattached Paleozoic stemless crinoids as environmental indices. Geobios Mem. Spec. 8:6368.Google Scholar
Frey, R. W. and Bromley, R. G. 1985. Ichnology of American chalks: the Selma Group (Upper Cretaceous), western Alabama. Can. J. Earth Sci. 22:801828.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. 501 pp. Belknap Press; Cambridge, MA.Google Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology. 11:212.Google Scholar
Grant, R. E. 1963. Unusual attachment of a Permian linoproductid brachiopod. J. Paleontol. 37:134140.Google Scholar
Hantzchel, W. 1975. Trace Fossils and Problematica. 269 pp. In: Teichert, C., ed. Treatise on Invertebrate Paleontology, Part W, Miscellanea supplement 1. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Hartnoll, R. G. 1967. An investigation of the movement of the scallop, Pecten maximus. Helgolander wiss. Meeresunters. 15:523533.Google Scholar
Hughes, R. G. 1975. The distribution of epizoites on the hydroid Nemertesia antennina (L.). J. Mar. Biol. Assoc. U.K. 55:275294.CrossRefGoogle Scholar
Jablonski, D. and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous: implications for the evolution of benthic paleocommunities. Pp. 747812. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science. 222:11231125.Google Scholar
Jackson, J. B. C. 1977. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am. Nat. 111:743767.Google Scholar
Jackson, J. B. C. 1983. Biological determinants of present and past sessile animal distributions. Pp. 39120. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Jorgensen, C. B. 1966. Biology of Suspension Feeding. 357 pp. Pergamon Press; Oxford.Google Scholar
Jumars, P. A. and Gallagher, E. D. 1982. Deep-sea community structure: three plays on the benthic proscenium. Pp. 217255. In: Ernst, W. G. and Morin, J. G., eds. The Environment of the Deep Sea. Prentice-Hall; Englewood Cliffs, NJ.Google Scholar
Kauffman, E. G. and Pratt, L. J. 1985. Field reference section. Pp. FRS-1–FRS-26. In: Pratt, L. M., Kauffman, E. G., and Zelt, F. B., eds. Fine-grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes. Soc. Econ. Paleontol. Mineral.; Tulsa, OK.Google Scholar
Kelly, S. R. A. and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology. 27:793807.Google Scholar
Koehl, M. A. R. 1984. How do benthic organisms withstand moving water? Am. Zool. 24:5770.Google Scholar
LaBarbera, M. 1977. Brachiopod orientation to water movement. I. Theory, laboratory behavior, and field observations. Paleobiology. 3:270287.Google Scholar
LaBarbera, M. 1978. Particle capture by a Pacific brittle star: experimental test of the aerosol suspension feeding model. Science. 201:11471149.Google Scholar
LaBarbera, M. 1984. Feeding currents and particle capture mechanisms in suspension-feeding animals. Am. Zool. 24:7184.CrossRefGoogle Scholar
Lawton, J. H. 1983. Plant architecture and the diversity of phytophagous insects. Ann. Rev. Entomol. 28:2329.Google Scholar
Linck, O. 1954. Die Muschelkalk-Seelilie Encrinus liliiformis. Naturwiss. Monatsschr. Deutsch. Naturk. “Aus de Heimat” 62:225235.Google Scholar
Lipps, J. H. and Hickman, C. S. 1982. Origin, age, and evolution of Antarctic and deep-sea faunas. Pp. 324356. In: Ernst, W. G. and Morin, J. G., eds. The Environment of the Deep Sea. Prentice-Hall; Englewood Cliffs, NJ.Google Scholar
MacGinitie, G. E. 1934. The natural history of Callianassa californiensis Dana. Am. Midl. Nat. 15:166176.CrossRefGoogle Scholar
Macurda, D. B. Jr. and Meyer, D. L. 1974. Feeding posture of modern stalked crinoids. Nature. 247:394396.Google Scholar
McKee, E. H. and Gangloff, R. G. 1969. Stratigraphic distribution of archaeocyathids in the Silver Peak Range and the White and Inyo Mountains, western Nevada and eastern California. J. Paleontol. 43:716726.Google Scholar
McKinney, F. K. and Gault, H. W. 1980. Paleoenvironment of Late Mississippian fenestrate bryozoans, eastern United States. Lethaia. 13:127146.Google Scholar
Meyer, D. L. 1981. Food and feeding mechanisms: Crinozoa. Pp. 2542. In: Jangoux, M. and Lawrence, J. M., eds. Echinoderm Nutrition. Balkema; Rotterdam.Google Scholar
Meyer, D. L. and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3:7482.Google Scholar
Meyer, D. L. and Ausich, W. I. 1983. Biotic interactions among Recent and among fossil crinoids. Pp. 377427. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Miller, M. F. and Byers, C. W. 1984. Abundant and diverse early Paleozoic infauna indicated by the stratigraphic record. Geology. 12:4043.Google Scholar
Monniot, C. 1967. Problèmes ecologiques poses par l'observation des Ascidiens dans la zone infralittorale. Helgolander wiss. Meeresunters. 15:371375.Google Scholar
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hard-ground communities. Lethaia. 15:309324.Google Scholar
Peterson, C. H. 1977. Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons. Mar. Biol. 43:343359.Google Scholar
Peterson, C. H. 1979. Predation, competitive exclusion, and diversity in the soft-sediment benthic communities of estuaries and lagoons. Pp. 233264. In: Livingston, R. J., ed. Ecological Processes in Coastal and Marine Systems. Plenum; New York.Google Scholar
Pickerill, R. K. 1984. Comment on “Abundant and diverse early Paleozoic infauna indicated by the stratigraphic record.” Geology. 12:567568.2.0.CO;2>CrossRefGoogle Scholar
Pojeta, J. Jr. 1978. The origin and early taxonomic diversification of pelecypods. Phil. Trans. Roy. Soc. Lond. 284B:225-246.Google Scholar
Pryor, W. A. 1975. Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. Geol. Soc. Am. Bull. 86:12441254.2.0.CO;2>CrossRefGoogle Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science. 215:15011503.Google Scholar
Rhoads, D. C., Speden, I. G., and Waage, K. M. 1972. Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota. Am. Assoc. Petrol. Geol. Bull. 56:11001113.Google Scholar
Rhoads, D. C. and Boyer, L. F. 1982. The effects of marine benthos on physical properties of sediments: a successional perspective. Pp. 352. In: McCall, P. L. and Tevesz, M. J. S., eds. Animal-Sediment Relations. Plenum; New York.Google Scholar
Rudwick, M. J. S. 1970. Living and Fossil Brachiopods. 199 pp. Hutchinson; London.Google Scholar
Runnegar, B. 1974. Evolutionary history of the Bivalve subclass Anomalodesmata. J. Paleontol. 48:904939.Google Scholar
Ryland, J. S. 1970. Bryozoans. 175 pp. Hutchinson; London.Google Scholar
Savrda, C. E. and Bottjer, D. J. 1986. Trace fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology. 14:36.2.0.CO;2>CrossRefGoogle Scholar
Schoener, T. W. 1982. The controversy over interspecific competition. Am. Sci. 70:586595.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology. 27:207237.Google Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytical description of the Phanerozoic marine fossil record. Paleobiology. 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Pub. Mus. Contr. Biol. Geol. 51:1125.Google Scholar
Sepkoski, J. J. Jr. and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190. In: Valentine, J. W., ed. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton Univ. Press and Pacific Div. Am. Ass. Adv. Sci.; Princeton and San Francisco.Google Scholar
Sheehan, P. M. and Schiefelbein, D. R. J. 1984. The trace fossil Thalassinoides from the Upper Ordovician of the eastern Great Basin: deep burrowing in the early Paleozoic. J. Paleontol. 58:440447.Google Scholar
Signor, P. W. III and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology. 10:229245.Google Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young Univ. Geol. Stud. 23:6173.Google Scholar
Sprinkle, J. 1980. An overview of the fossil record. Pp. 1526. In: Broadhead, T. W. and Waters, J. A., eds. Echinodermata, Notes for a Short Course. Dept. Geol. Sci., Univ. Tenn. Stud. Geol. 3.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 42:214229.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits in the Bivalvia. Geol. Soc. Am. Mem. 125:1296.Google Scholar
Stanley, S. M. 1975. Adaptive themes in the evolution of the Bivalvia (Mollusca). Ann. Rev. Earth and Planet. Sci. 3:361385.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250. In: Hallam, A., ed. Patterns of Evolution as Illustrated by the Fossil Record. Elsevier; Amsterdam.Google Scholar
Stanley, S. M. 1985. Earth and Life through Time. 690 pp. Freeman; New York.Google Scholar
Stanton, R. J. Jr., Dodd, J. R. and Alexander, R. R. 1979. Eccentricity in the clypeasteroid echinoid Dendraster: environmental significance and application in Pliocene paleoecology. Lethaia. 12:7587.Google Scholar
Strong, D. R., Lawton, J. H., and Southwood, R. 1984a. Insects on Plants. 313 pp. Harvard Univ. Press; Cambridge.Google Scholar
Strong, D. R., Simberloff, D., Abele, L. G., and Thistle, A. B. (eds.). 1984b. Ecological communities: conceptual issues and the evidence. 613 pp. Princeton Univ. Press; Princeton.Google Scholar
Tevesz, M. J. S. and McCall, P. L. 1976. Primitive life habits and adaptive significance of the pelecypod form. Paleobiology. 2:183190.Google Scholar
Thayer, C. W. 1975. Morphologic adaptations of benthic invertebrates to soft substrata. J. Mar. Res. 33:177189.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458461.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Communities. Plenum; New York.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. 511 pp. Prentice Hall; Englewood Cliffs, NJ.Google Scholar
Vermeij, G. J. 1977. The Mesozoic faunal revolution: evidence from snails, predators and grazers. Paleobiology. 3:245258.Google Scholar
Vogel, K. and Gutman, W. F. 1980. The derivation of pelecypods: role of biomechanics, physiology and environment. Lethaia. 13:269275.Google Scholar
Vogel, S. 1974. Current-induced flow through the sponge, Halchondria. Biol. Bull. Mar. Biol. Lab. Woods Hole. 147:443456.Google Scholar
Vogel, S. 1978. Organisms that capture currents. Sci. Am. 239:128139.Google Scholar
Vogel, S. 1981. Life in Moving Fluids. 352 pp. Willard Grant; Boston.Google Scholar
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Harvard Univ. Comp. Zool. Mem. 20, 21:1897.Google Scholar
Warner, G. F. 1977. On the shapes of passive suspension-feeders. Pp. 567576. In: Keegan, B. F., Ceidigh, P. O., and Boaden, P. J. S., eds. Biology of Benthic Organisms. Pergamon; New York.Google Scholar
Watkins, R. and Hurst, J. M. 1977. Community relations of Silurian crinoids at Dudley, England. Paleobiology. 3:207217.Google Scholar
Wetzel, A. and Aigner, T. 1986. Stratigraphic completeness: tiered trace fossils provide a measuring stick. Geology. 14:234237.Google Scholar

Phanerozoic

Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Cox, L. R., Newell, N. D., Boyd, D. W., Branson, C. C., Casey, R., Chaven, A., Coogan, A. H., Deschaseaux, C., Fleming, C. A., Haas, F., Hertlein, L. G., Kauffman, E. G., Keen, A. M., LaRocque, A., McAlester, A. L., Moore, R. C., Nuttall, C. P., Perkins, B. F., Puri, H. S., Smith, L. A., Soot-Ryen, T., Stenzel, H. B., Trueman, E. R., Turner, R. D., and Weir, J. 1969. Bivalvia. 1224 pp. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part N, Mollusca 6. Geol. Soc. Am. and Univ. Kansas Press; Lawrence.Google Scholar
Frey, R. W., Howard, J. D., and Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeogr., Palaeoclimatol., Palaeoecol. 23:199229.Google Scholar
Hantzschel, W. 1975. Trace Fossils and Problematica (2d ed.). 269 pp. In: Teichert, C., ed. Treatise on Invertebrate Paleontology, Part W, Miscellanea, suppl 1. Geol. Soc. Am. and Univ. Kansas Press; Boulder and Lawrence.Google Scholar
McKerrow, W. S. 1978. The Ecology of Fossils. 384 pp. M.I.T. Press; Cambridge, MA.Google Scholar
Roux, M. 1979. Un example de relation étroite entre la géodynamique des oceans et revolution des faunes benthique bathyales et abyssales: l'histoire des Crinoides pedoncules du Mesozoique a l'Actuel. Bull. Soc. Geol. France. 21:613618.Google Scholar
Runnegar, B. 1974. Evolutionary history of the bivalve subclass Anomalodesmata. J. Paleontol. 48:904939.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: Evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology. 27:207237.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 42:214229.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. J. Paleontol. 46:165212.Google Scholar
Stanley, S. M. 1975. Adaptive trends in the evolution of the Bivalvia (Mollusca). Ann. Rev. Earth and Planet. Sci. 3:361385.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250. In: Hallam, A.Patterns of Evolution as Illustrated by the Fossil Record. Elsevier; Amsterdam.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar

Cenozoic

Baldi, T. 1973. Mollusc fauna of the Hungarian upper Oligocene (Egerian). 511 pp. Akademiai Kiado; Budapest.Google Scholar
Baluk, W. and Radwanski, A. 1977. Organic communities and facies development of the Korytnica Basin (Middle Miocene; Holy Cross Mountains, central Poland). Acta Geol. Pol. 27:85123.Google Scholar
Clark, A. H. 1915–1950. A monograph of the existing crinoids. U.S. Nat. Mus. Bull. 82, pts. 1-5.Google Scholar
Dockery, D. T. III. 1980. The invertebrate macropaleontology of the Clarke County, Mississippi area. Bull. Miss. Bur. Geol. 122. 387 pp.Google Scholar
Hoffman, A. 1977. Synecology of macrobenthic assemblages of the Korytnica Clays (Middle Miocene, Holy Cross Mountains, Poland). Acta Geol. Pol. 27:227280.Google Scholar
Miller, W. III. 1982. The paleoecologic history of late Pleistocene estuarine and marine fossil deposits in Dare County, North Carolina. Southeastern Geol. 23:114.Google Scholar
Stanton, R. J. Jr. and Dodd, J. R. 1970. Paleoecologic techniques—comparison of faunal and geochemical analysis of Pliocene paleoenvironments, Kettleman Hills, California. J. Paleontol. 44:10921121.Google Scholar
Stanton, R. J. Jr. and Dodd, J. R. 1976. The application of trophic structure of fossil communities in paleoenvironmental reconstruction. Lethaia. 9:327342.Google Scholar
Stanton, R. J. Jr. and Nelson, P. C. 1980. Reconstruction of the trophic web in paleontology: Community structure in the Stone City Formation (Middle Eocene, Texas). J. Paleontol. 54:118135.Google Scholar
Stanton, R. J. Jr., Dodd, J. R., and Alexander, R. R. 1979. Eccentricity in the clypeasteroid echinoid Dendraster: environmental significance and application in Pliocene paleoecology. Lethaia. 12:7587.Google Scholar
Stump, T. E. 1975. Pleistocene molluscan paleoecology and community structure of the Puerto Libertad region, Sonora, Mexico. Palaeogeogr., Palaeoclimatol., Palaeoecol. 17:177226.Google Scholar
Ager, D. V. 1965. The adaptation of Mesozoic brachiopods to different environments. Palaeogeogr., Palaeoclimatol., Palaeoecol. 1:143172.Google Scholar
Bottjer, D. J. 1981. Structure of Upper Cretaceous chalk benthic communities, southwestern Arkansas. Palaeogeogr., Palaeoclimatol., Palaeoecol. 34:225256.Google Scholar
Bottjer, D. J. 1985. Trace fossils and paleoenvironments for two Arkansas Upper Cretaceous discontinuity surfaces. J. Paleontol. 59:282298.Google Scholar
Frey, R. W. and Howard, J. D. 1972. Trace fossils from the Upper Cretaceous of the Western Interior: potential criteria for facies models. Mountain Geol. 19:110.Google Scholar
Fursich, F. T. 1975. Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia. 8:151172.Google Scholar
Fursich, F. T. 1976. Fauna-substrate relationships in the Corallian of England and Normandy. Lethaia. 9:343356.Google Scholar
Fursich, F. T. 1984. Palaeoecology of boreal invertebrate fossils from the Upper Jurassic of central east Greenland. Palaeogeogr., Palaeoclimatol., Palaeoecol. 48:309364.Google Scholar
Hagdorn, H. 1985. Immigration of crinoids into the German Muschelkalk Basin. Pp. 237254. In: Bayer, U. and Seilacher, A., eds. Sedimentary and Evolutionary Cycles. Springer-Verlag; Berlin.Google Scholar
Jablonski, D. and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous: implications for the evolution of benthic paleocommunities. Pp. 747812. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Kaufmann, E. G. 1967. Coloradoan macroinvertebrates assemblages, central Western Interior, United States. Pp. 67143. In: Kauffman, E. G. and Kent, H. C., eds. Paleoenvironments of the Cretaceous Seaway—A Symposium. Colorado School of Mines; Golden.Google Scholar
Kauffman, E. G. 1974. Cretaceous assemblages, communities, and associations: Western Interior United States and Caribbean Islands. Pp. 12.112.27. In: Ziegler, A. M., Walker, K. R., Anderson, E. J., Kaufmann, E. G., Ginsburg, R. N., and James, N. P.Principles of benthic community analysis. Univ. Miami Comp. Sed. Lab. Sedimenta IV; Miami, FL.Google Scholar
Larson, A. R. and Lane, N. G. 1964. Repetitive bedding in Triassic sediments in Clark County, Nevada. Pp. 265274. In: Merriam, D. F., ed. Symposium on Cyclic Sedimentation, Kansas Geol. Survey Bull. 166(1).Google Scholar
Laws, R. A. 1982. Late Triassic depositional environments and molluscan associations for west-central Nevada. Palaeogeogr., Palaeoclimatol., Palaeoecol. 37:131148.Google Scholar
Linck, O. 1954. Die Muschelkalk-Seelilie Encrinus liliiformis. Naturwiss. Monatsshcr. Deutsch. Naturk. “Aus de Heimat” 62:225235.Google Scholar
Meyer, D. L. and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3:7482.Google Scholar
Rhoads, D. C., Speden, I. G., and Waage, K. M. 1972. Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota. Amer. Assoc. Petrol. Geol. Bull. 56:11001113.Google Scholar
Scott, R. W. 1970. Paleoecology and paleontology of the Lower Cretaceous Kiowa Formation, Kansas. Univ. Kansas Paleontol. Contrib. Art. 52, 94 pp.Google Scholar
Scott, R. W. 1974. Bay and shoreface benthic communities in the Lower Cretaceous. Lethaia. 7:315330.Google Scholar
Scott, R. W. 1976. Trophic classification of benthic communities. Pp. 2966. In: Scott, R. W. and West, R. R., eds. Structure and Classification of Paleocommunities. Dowden, Hutchinson and Ross; Stroudsburg, Pa.Google Scholar
Surlyk, F. 1972. Morphological adaptations and population structures of the Danish chalk brachiopods (Maastrichtian, Upper Cretaceous). K. Dan. Vidensk. Selsk. Biol. Skr. 19, 57 pp.Google Scholar
Tchoumatchenco, P. 1972. Thanatocoenoses and biotopes of Lower Jurassic brachiopods in central and western Bulgaria. Palaeogeogr., Palaeoclimatol., Palaeoecol. 12:227242.Google Scholar
Walley, C. D. 1983. The palaeoecology of the Callovian and Oxfordian strata of Majdal Shams (Syria) and its implications for Levantine palaeogeography and tectonics. Palaeogeogr., Palaeoclimatol., Palaeoecol. 42:323340.Google Scholar
Wetzel, A. and Aigner, T. 1986. Stratigraphic completeness: Tiered trace fossils provide a measuring stick. Geology. 14:234237.Google Scholar
Wobber, F. J. 1968. A faunal analysis of the Lias (Lower Jurassic) of south Wales (Great Britain). Palaeogeogr., Palaeoclimatol., Palaeoecol. 5:269308.Google Scholar
Wright, R. P. 1974. Jurassic bivalves from Wyoming and South Dakota: A study of feeding relationships. J. Paleontol. 48:425433.Google Scholar

Paleozoic

Alpert, S. P. 1973. Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil. J. Paleontol. 47:919924.Google Scholar
Alpert, S. P. 1974. Systematic review of the genus Skolithos. J. Paleontol. 48:661669.Google Scholar
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. J. Paleontol. 54:273288.Google Scholar
Ausich, W. I. 1986. Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio). J. Paleontol. 60:84106.Google Scholar
Ausich, W. I. and Bottjer, D. J. 1985. Echinoderm role in the history of Phanerozoic tiering in suspension feeding communities. Pp. 311. In: Keegan, B. and O'Connor, B. D. S., eds. Echinodermata. A. A. Balkema; Rotterdam.Google Scholar
Ausich, W. I., Kammer, T. W., and Lane, N. G. 1979. Fossil communities of the Borden Mississippian delta in Indiana and northern Kentucky, J. Paleontol. 53:11821196.Google Scholar
Beus, S. S. 1984. Fossil associations in the High Tor Limestone (Lower Carboniferous) of South Wales. J. Paleontol. 58:651667.Google Scholar
Bockelie, J. F. 1984. The Diploporita of the Oslo region, Norway. Palaeontol. 27:168.Google Scholar
Boucot, A. J. and Perry, D. G. 1981. Lower Devonian brachiopod dominated communities of the Cordilleran Region. Pp. 185222. In: Gray, J., Boucot, A. J. and Berry, W. B. N., eds. Communities of the Past. Hutchinson Ross; Stroudsburg, Pa.Google Scholar
Bretsky, P. W. Jr. 1970. Upper Ordovician ecology of the central Appalachians. Peabody Mus. Nat. Hist. Bull. 34, 150 pp.Google Scholar
Brett, C. E. 1978a. Description and paleoecology of a new Lower Silurian camerate crinoid. J. Paleontol. 52:91103.Google Scholar
Brett, C. E. 1978b. Attachment structures in the rhombiferan cystoid Caryocrinites and their paleobiologic implications. J. Paleontol. 52:714726.Google Scholar
Brett, C. E. and Eckert, J. D. 1982. Palaeoecology of a well-preserved crinoid colony from the Silurian Rochester Shale in Ontario. Roy. Ontario Mus. Life Sci. Contrib. 131, 20 pp.Google Scholar
Brower, J. C. 1966. Functional morphology of Calceocrinidae with descriptions of some new species. J. Paleontol. 47:613634.Google Scholar
Brower, J. C. and Veinus, J. 1978. Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bull. Amer. Paleontol. 74(304):373-506.Google Scholar
Byers, C. W. and Gavlin, S. 1979. Two contemporaneous equilibrium communities in the Ordovician of Wisconsin. Lethaia. 12:297305.Google Scholar
Calef, C. E. and Hancock, N. J. 1974. Wenlock and Ludlow marine communities in the Wales and Welsh Borderland. Palaeontology. 17:779810.Google Scholar
Chamberlain, C. K. and Baer, J. 1973. Ophiomorpha and a new thallassinid burrow from the Permian of Utah. Brigham Young Univ. Geol. Studies 20:7994.Google Scholar
Condra, G. E. and Elias, M. K. 1944. Study and revision of Archimedes (Hall). Geol. Soc. Amer. Spec. Pap 53, 243 pp.Google Scholar
Conway Morris, S. 1979. The Burgess Shale (Middle Cambrian) fauna. Ann. Rev. Ecol. Syst. 10:327349.Google Scholar
Crimes, P. T. and Anderson, M. M. 1985. Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): Temporal and environmental implications. J. Paleontol. 59:310343.Google Scholar
Cuffey, R. J. and McKinney, F. K. 1979. Devonian Bryozoa. Pp. 307311. In: House, M. R., Scrutton, C. T., and Bassett, M. G., eds. The Devonian System. Spec. Pap. Palaeontol. 23.Google Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian) in southern Ontario, Canada. Royal. Ont. Mus. Life Sci. Contrib. 137:182.Google Scholar
Elias, M. K. and Condra, G. E. 1957. Fenestella from the Permian of west Texas. Geol. Soc. Amer. Mem. 70, 158 pp.Google Scholar
Ettensohn, F. R. 1975. The autecology of Agassizocrinus lobatus. J. Paleontol. 49:10441061.Google Scholar
Ettensohn, F. R. 1984. Unattached Paleozoic stemless crinoids as environmental indices. Geobios, Mem. Special. 8:6368.Google Scholar
Feldman, H. R. 1980. Level-bottom brachiopod communities in the Middle Devonian of New York. Lethaia. 13:2746.Google Scholar
Frest, T. J. and Strimple, H. L. 1978. Manicrinus (nov.), a cladid evolutionary homeomorph of the bottom-dwelling Hybocrinus, Brownsport (Silurian: Ludlow) of Tennessee. Southeastern Geol. 19:157175.Google Scholar
Hattin, D. E. 1957. Depositional environments of the Wreford Megacyclothem (Lower Permian) of Kansas. Kan. Geol. Survey Bull, 124, 150 pp.Google Scholar
Johnson, R. G. 1962. Interspecific associations in Pennsylvanian fossil assemblages. J. Geol. 70:3255.Google Scholar
Lane, N. G. 1963. The Berkeley crinoid collection from Crawfordsville, Indiana. J. Paleontol. 37:10011008.Google Scholar
Lane, N. G. 1973. Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana). Univ. Calif. Pub. Geol. Sci. 99, 141 pp.Google Scholar
Larson, D. W. and Rhoads, D. C. 1983. The evolution of infaunal communities and sedimentary fabrics. Pp. 627648. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Lewis, R. D. 1981. Archaeotaxocrinus, new genus, the earliest known flexible crinoid (Whiterockian) and its phylogenetic implications. J. Paleontol. 55:227238.Google Scholar
Lochman, C. and Hu, C.-H. 1962. Upper Cambrian faunas from the northwest Wind River Mountains, Wyoming, part III. J. Paleontol. 36:129.Google Scholar
McKinney, F. K. and Gault, H. W. 1980. Paleoenvironment of Late Mississippian fenestrate bryozoans, eastern United States. Lethaia. 13:127146.Google Scholar
Millendorf, S. A. 1979. The functional morphology and life habits of the Devonian blastoid Eleutherocrinus cassedayi Shumard & Yandell. J. Paleontol. 53:553561.Google Scholar
Moore, R. C., ed. 1968. Treatise on Invertebrate Paleontology, Echinodermata 1, Part S. 650 pp. Geol. Soc. Amer. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Palmer, A. R. 1974. Search for the Cambrian world. Amer. Sci. 62:216225.Google Scholar
Parsley, R. L. 1980. Paracrinoidea. Pp. 139143. In: Broadhead, T. W. and Waters, J. A., eds. Echinodermata, Notes for a Short Course. Dept. Geol. Sci., Univ. Tenn. Studies in Geol. 3.Google Scholar
Paul, C. R. C. 1973. British Ordovician cystoids. Palaeontol. Soc. Mon. 127, pt. 1, 64 pp.Google Scholar
Pojeta, J. Jr. 1978. The origin and early taxonomic diversification of pelecypods. Phil. Trans. Roy. Soc. London 284B:225-246.Google Scholar
Robison, R. A. 1964. Late Middle Cambrian faunas from western Utah. J. Paleontol. 38:510566.Google Scholar
Sepkoski, J. J. Jr. 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. Pp. 371385. In: Eisele, G. and Seilacher, A., eds. Cyclic and Event Stratification. Springer-Verlag; Berlin.Google Scholar
Springer, F. 1920. The Crinoidea Flexibilia. Smithsonian Inst. Pub. 2501, 486 pp.Google Scholar
Springer, F. 1926. American Silurian crinoids. Smithsonian Inst. Pub. 2871, 143 pp.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of the blastozoan echinoderms. Mus. Comp. Zool. Spec. Pap., Cambridge, Mass., 284 pp.Google Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young Univ. Geol. Stud. 23:6173.Google Scholar
Sprinkle, J., ed. 1982. Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. Univ. Kansas Paleontol. Contrib. Mon. 1, 369 pp.Google Scholar
Sprinkle, J. and Gutschick, R. C. 1967. Costatoblastus, a channel fill blastoid from the Sappington Formation of Montana. J. Paleontol. 41:385402.Google Scholar
Stratton, J. F. and Horowitz, A. S. 1977. Polypora M'Coy from the Devonian of southeastern Indiana. Bull. Indiana Geol. Surv. 56, 47 pp.Google Scholar
Strimple, H. L. 1977. Unusual morphological features in the blastoid genus Pentremites. Geol. Mag. 114:913.Google Scholar
Strimple, H. L. and Moore, R. C. 1971. Crinoids of the LaSalle Limestone (Pennsylvanian) of Illinois. Univ. Kans. Paleont. Contrib. Art. 55, 48 pp.Google Scholar
Titus, R. and Cameron, B. 1976. Fossil communities of the Lower Trenton Group (Middle Ordovician) of central and northwestern New York State. J. Paleontol. 50:12091225.Google Scholar
Wachsmuth, C. and Springer, F. 1897. The North American Crinoidea Camerata. Harvard Col. Mus. Comp. Anat. Mem. 897 pp.Google Scholar
Walker, K. R. 1972. Community ecology of the Middle Ordovician Black River Group of New York State. Geol. Soc. Amer. Bull. 83:24992524.Google Scholar
Wallace, P. 1969. Specific frequency and environmental indicators in two horizons of the Calcaire de Ferques (Upper Devonian), northern France. Palaeontology. 12:366381.Google Scholar
Watkins, R. and Hurst, J. M. 1977. Community relations of Silurian crinoids at Dudley England. Paleobiology. 3:207217.Google Scholar
Williams, H. S. 1913. Recurrent Tropidoleptus zones of the Upper Devonian in New York. U.S. Geol. Survey Prof. Paper 79, 103 pp.Google Scholar
Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K. 1968. The composition and structure of Lower Silurian marine communities. Lethaia. 1:127.Google Scholar