Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T11:19:47.547Z Has data issue: false hasContentIssue false

Permian–Triassic phylogenetic and morphologic evolution of rhynchonellide brachiopods

Published online by Cambridge University Press:  17 August 2021

Zhen Guo
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China. E-mail: [email protected], [email protected], [email protected]
Zhong-Qiang Chen*
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China. E-mail: [email protected], [email protected], [email protected]
David A. T. Harper
Affiliation:
Palaeoecosystems Group, Department of Earth Sciences, Durham University, Durham DH1 3LE, U.K. E-mail: [email protected]
Yuangeng Huang
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China. E-mail: [email protected], [email protected], [email protected]
*
*Corresponding author.

Abstract

The Rhynchonellida is a major group of brachiopods that survived the “big five” mass extinctions and flourished after the Permian/Triassic (P/Tr) crisis. However, phylogenetic and character evolution in the Rhynchonellida across the P/Tr transition is poorly understood. In view of the widespread homoplasy across this order, we employ a tip-dated Bayesian analysis to reconstruct phylogenetic relationships for late Permian–Triassic rhynchonellides. The same data were also analyzed using three other methods: undated Bayesian, equal-weighting, and implied-weighting parsimony. Compared with trees generated by other methods, those constructed by tip-dating best account for the homoplasy in this group and are closer to previous assumptions on the evolution of this order. Based on the analyses of multiple trees, the major increase in lineage richness occurred in the Early and early Middle Triassic. Also, richness in the Anisian almost reached the highest level seen in the Triassic. According to fossil records, a pronounced reduction in shell size and in the development of ornamentation occurred after the P/Tr extinction, which is largely due to the loss of large and highly sculptured genera and the diversification of small-sized and weakly ornamented genera. Ancestral-state estimation of shell size and development of ornamentation, coupled with comparisons of other characters, indicate that the Early–Middle Triassic mature “small-sized taxa” may have characters displayed by juveniles of their ancestors. This suggests that for these genera, paedomorphosis was possibly a strategy to survive and diversify in the harsh environment after the P/Tr extinction.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1962. A monograph of the British Liassic Rhynchonellidae, part 3. Palaeontographical Society of London Monograph 116:85136.Google Scholar
Ager, D. V., Childs, A., and Pearson, D. A.. 1972. The evolution of the Mesozoic Rhynchonellida. Geobios 5:157235.CrossRefGoogle Scholar
Alvarez, A., Rong, J. Y., and Boucot, A. J.. 1998. The classification of athyridid brachiopods. Journal of Paleontology 72:827855.CrossRefGoogle Scholar
Baliński, A., and Sun, Y. L.. 2008: Micromorphic brachiopods from the Lower Carboniferous of South China, and their life habits. Fossils and Strata 54:105115.Google Scholar
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.CrossRefGoogle Scholar
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.CrossRefGoogle Scholar
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.CrossRefGoogle Scholar
Bapst, D. W., and Hopkins, M. J.. 2017. Comparing cal3 and other a posteriori time-scaling approaches in a case study with the pterocephaliid trilobites. Paleobiology 43:4967.CrossRefGoogle Scholar
Bapst, D. W., Wright, A. M., Matzke, N. J., and Lloyd, G. T.. 2016. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biology Letters 12:20160237.CrossRefGoogle Scholar
Barido-Sottani, J., Aguirre-Fernández, G., Hopkins, M. J., Stadler, T., and Warnock, R.. 2019. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proceedings of the Royal Society of London B 286:20190685.Google ScholarPubMed
Barido-Sottani, J., van Tiel, N. M. A., Hopkins, M. J., Wright, D. F., Stadler, T., and Warnock, R. C. M.. 2020. Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates in time calibrated tree inference. Frontiers in Ecology and Evolution 8:183.CrossRefGoogle Scholar
Bitner, M. A., Melnik, V. P., and Zezina, O. N.. 2013. New paedomorphic brachiopods from the abyssal zone of the north-eastern Pacific Ocean. Zootaxa 3613:281288.CrossRefGoogle ScholarPubMed
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kuhnert, D., De Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M. A., Wu, C. H., Xie, D., Zhang, C., Stadler, T., and Drummond, A. J.. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650.CrossRefGoogle ScholarPubMed
Campbell, K. A., and Bottjer, D. J.. 1995. Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments. Geology 23:321324.2.3.CO;2>CrossRefGoogle Scholar
Carlson, S. J. 1991a. A phylogenetic perspective on articulate brachiopod diversity and the Permo-Triassic extinction. Pp. 119142 in Dudley, E. C., ed. The unity of evolutionary biology, proceedings of the 4th International Congress of Systematic and Evolutionary Biology. Dioscorides Press, Portland, Ore.Google Scholar
Carlson, S. J. 1991b. Phylogenetic relationships among brachiopod higher taxa. Pp. 310 in MacKinnon, D. I., Lee, D. E., and Campbell, J. D., eds. Brachiopods through time. Balkema, Rotterdam.Google Scholar
Carlson, S. J. 1993. Phylogeny and evolution of “pentameride” brachiopods. Palaeontology 36:807837.Google Scholar
Carlson, S. J. 1995. Phylogenetic relationships among extant brachiopods. Cladistics 11:131197.CrossRefGoogle ScholarPubMed
Carlson, S. J. 2016. The evolution of Brachiopoda. Annual Review of Earth and Planetary Sciences 44:409438.CrossRefGoogle Scholar
Carlson, S. J., and Fitzgerald, P. C.. 2008. Sampling taxa, estimating phylogeny and inferring macroevolution: an example from Devonian terebratulide brachiopods. Transactions of the Royal Society of Edinburgh (Earth and Environmental Science) 98:311325.CrossRefGoogle Scholar
Carlson, S. J., and Leighton, L. R.. 2001. The phylogeny and classification of Rhynchonelliformea. In S. J. Carlson, and M. R. Sandy, eds. Brachiopods ancient and modern: a tribute to G. Arthur Cooper. Paleontological Society Papers 7:27–51.CrossRefGoogle Scholar
Carlson, S. J., Boucot, A. J., Rong, J. Y., and Blodgett, R. B.. 2002. Pentamerida. Pp. 921–1026 in Brachiopoda 4, Rhynchonelliformea. Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.CrossRefGoogle Scholar
Chen, Z. Q., and Benton, M. J.. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience 5:375383.CrossRefGoogle Scholar
Chen, Z. Q., Shi, G. R., and Kaiho, K.. 2002. A new genus of rhynchonellid brachiopod from the lower Triassic of South China and implications for timing the recovery of Brachiopoda after the end Permian mass extinction. Palaeontology 45:149164.CrossRefGoogle Scholar
Chen, Z. Q., Kaiho, K., and George, A. D.. 2005a. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeography, Palaeoclimatology, Palaeoecology 224:270290.CrossRefGoogle Scholar
Chen, Z. Q., Kaiho, K., and George, A. D.. 2005b. Survival strategy of brachiopod fauna from the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 224:232269.CrossRefGoogle Scholar
Chen, Z. Q., Tong, J., Kaiho, K., and Kawahata, H.. 2007. Onset of biotic and environmental recovery from the end-Permian mass extinction within 1–2 million years: a case study of the Lower Triassic of the Meishan section, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 252:176187.CrossRefGoogle Scholar
Chen, Z. Q., Tong, J., Zhang, K., Yang, H., Liao, Z., Song, H., and Chen, J.. 2009. Environmental and biotic turnover across the Permian-Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Australian Journal of Earth Sciences 56:775797.CrossRefGoogle Scholar
Chen, Z. Q., Yang, H., Luo, M., Benton, M. J., Kaiho, K., Zhao, L. S., Huang, Y. G., Zhang, K. X., Fang, Y. H., Jiang, H. S., Qiu, H., Li, Y., Tu, C. Y., Shi, L., Zhang, L., Feng, X. Q., and Chen, L.. 2015. Complete biotic and sedimentary records of the Permian-Triassic transition from Meishan section, South China: ecologically assessing mass extinction and its aftermath. Earth-Science Reviews 149:67107.CrossRefGoogle Scholar
Chen, Z. Q., Zhao, L. S., Wang, X. D., Luo, M., and Guo, Z.. 2018. Great Paleozoic–Mesozoic biotic turnings and paleontological education in China: a tribute to the achievements of Professor Zunyi Yang. Journal of Earth Science 29:721732.CrossRefGoogle Scholar
Chen, Z. Q., Tu, C. Y., Pei, Y., Ogg, J., Fang, Y. H., Wu, S. Q., Feng, X. Q., Huang, Y. G., Guo, Z., and Yang, H.. 2019. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic. Earth-Science Reviews 189:2150.CrossRefGoogle Scholar
Congreve, C. R., and Lamsdell, J. C.. 2016. Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59:447462.CrossRefGoogle Scholar
Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2015. Phylogenetic revision of the Strophomenida, a diverse and ecologically important Palaeozoic brachiopod order. Palaeontology 58:743758.CrossRefGoogle Scholar
Cooper, G. A. 1972. Homeomorphy in recent deep-sea brachiopods. Smithsonian Contributions to Paleobiology 11:125.Google Scholar
Cooper, G. A., and Grant, R. E.. 1976. Permian brachiopods of west Texas, IV. Smithsonian Contributions to Paleobiology 21:19232607.Google Scholar
Curry, G. B., and Brunton, C. H. C.. 2007. Stratigraphic distribution of brachiopods. Pp. 29013081 in Brachiopoda 6, Supplement. Part H of Selden, P. A., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Dagys, A. S. 1968. Iurskie i rannemelovye brakhiopody severa Sibiri. Trudy Instituta Geologii i Geofiziki 41:1167.Google Scholar
Dagys, A. S. 1974. Triasovye brakhiopody (morfologia, sistema, filogeniia, stratigraficheskoe znachenie i biogeografiia. Akademiia Nauk SSSR, Sibirskoe Otdelenie, Institut Geologii i Geofiziki, Trudy 214:1387.Google Scholar
Drummond, A. J., Ho, S. Y., Phillips, M. J., and Rambaut, A.. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4:e88.CrossRefGoogle Scholar
Erwin, D. H. 2006. Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton, N.J.Google Scholar
Farris, J. S. 1969. A successive approximations approach to character weighting. Systematic Zoology 18:374385.CrossRefGoogle Scholar
Gavryushkina, A., Welch, D., Stadler, T., and Drummond, A. J.. 2014. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10:e1003919.CrossRefGoogle ScholarPubMed
Goloboff, P. A. 1993. Estimating character weights during tree search. Cladistics 9:8391.CrossRefGoogle ScholarPubMed
Goloboff, P. A., and Catalano, S. A.. 2016. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221238.CrossRefGoogle ScholarPubMed
Goloboff, P. A., Carpenter, J. M., Arias, J. S., and Miranda-Esquivel, D. R.. 2008. Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24:758773.CrossRefGoogle Scholar
Goloboff, P. A., Torres, A., and Arias, J. S.. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34:407437.CrossRefGoogle ScholarPubMed
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press, Cambridge, Mass.Google Scholar
Grant, R. E. 1988. The family Cardiarinidae (Late Paleozoic rhynchonellid Brachiopoda). Senckenbergiana Lethaia 69:121135.Google Scholar
Guo, Z., Chen, Z. Q., and Harper, D. A. T.. 2020a. The Anisian (Middle Triassic) brachiopod fauna from Qingyan, Guizhou, southwestern China. Journal of Systematic Palaeontology 18:647701.CrossRefGoogle Scholar
Guo, Z., Chen, Z. Q., and Harper, D. A. T.. 2020b. Phylogenetic and ecomorphologic diversifications of spiriferinid brachiopods after the end-Permian extinction. Paleobiology 46:495510.CrossRefGoogle Scholar
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carlson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology, 40:675692.CrossRefGoogle Scholar
Huang, Y. G., Chen, Z. Q., Wignall, P. B., and Zhao, L. S.. 2017. Latest Permian to Middle Triassic redox condition variations in ramp settings, South China: pyrite framboid evidence. Geological Society of America Bulletin 129:229243.CrossRefGoogle Scholar
Huang, Y. G., Chen, Z. Q., Algeo, T. J., Zhao, L. S., Baud, A., Bhat, G. M., Zhang, L., and Guo, Z.. 2019. Two-stage marine anoxia and biotic response during the Permian–Triassic transition in Kashmir, northern India: pyrite framboid evidence. Global and Planetary Change 172:124139.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Ronquist, F.. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754755.CrossRefGoogle Scholar
Jaanusson, V. 1976. Faunal dynamics in the middle Ordovician (Viruan) of Balto–Scandia. Pp. 301326 in Bassett, M. G., ed. The Ordovician system: proceedings of a palaeontological association symposium. University of Wales Press and National Museum of Wales, Cardiff.Google Scholar
Jaecks, G. S., and Carlson, S. J.. 2001. How phylogenetic inference can shape our view of heterochrony: examples from thecideide brachiopods. Paleobiology 27:205225.2.0.CO;2>CrossRefGoogle Scholar
Keating, J. N., Sansom, R. S., Sutton, M. D., Knight, C. G., and Garwood, R. J.. 2020. Morphological phylogenetics evaluated using novel evolutionary simulations. Systematic Biology 69:897912.CrossRefGoogle ScholarPubMed
Kiel, S., Glodny, J., Birgel, D., Bulot, L. G., Campbell, K. A., Gaillard, C., Graziano, R., Kaim, A., Lazǎr, I., Sandy, M. R., and Peckmann, J.. 2014. The paleoecology, habitats, and stratigraphic range of the enigmatic cretaceous brachiopod Peregrinella. PLoS ONE 9:e109260.CrossRefGoogle ScholarPubMed
King, B. 2020. Bayesian tip-dated phylogenetics in paleontology: topological effects and stratigraphic fit. Systematic Biology 70:283294.CrossRefGoogle Scholar
King, B., and Beck, R. M. D.. 2020. Tip dating supports novel resolutions of controversial relationships among early mammals. Proceedings of the Royal Society of London B 287:20200943.Google ScholarPubMed
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W.. 2007. Paleophysiology and end Permian mass extinction. Earth and Planetary Science Letters 256:295313.CrossRefGoogle Scholar
Lee, D. E. 2008. The terebratulides: the supreme brachiopod survivors. Pp. 241–249 in D.A.T. Harper, S. L. Long, and C. Nielsen, eds. Brachiopoda: fossil and recent. Fossils and Strata 54:1–336. Wiley, Hoboken, N.J.Google Scholar
Lee, M. S. Y., and Yates, A. M.. 2018. Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proceedings of the Royal Society of London B 285:20181071.Google ScholarPubMed
Lee, S., and Shi, G. R.. 2016. A preliminary phylogenetic study of late Palaeozoic spiriferoid brachiopods using cladistic and Bayesian approaches. Palaeoworld 25:4359.CrossRefGoogle Scholar
Leighton, L. R. 1999. Possible latitudinal predation gradient in middle Paleozoic oceans. Geology 27:4750.2.3.CO;2>CrossRefGoogle Scholar
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913925.CrossRefGoogle ScholarPubMed
MacKinnon, D. I. 2001. Ancestry and heterochronic origin of brachiopods of the Superfamily Megathyridoidea (Order Terebratulida): a case of natural selection for equatorial dwarfism? Pp. 229239 in Brunton, C. H. C., Cocks, L. R. M., and Long, S. L., eds. Brachiopods. Past and present. Taylor & Francis, London.Google Scholar
Manceñido, M. O., and Motchurova-Dekova, N.. 2010. A review of crural types, their relationships to shell microstructure, and significance among post-Palaeozoic Rhynchonellida. Special Papers in Palaeontology 84:203224.Google Scholar
Manceñido, M. O., and Owen, E. F.. 2001. Post-Paleozoic Rhynchonellida (Brachiopoda): classification and evolutionary background. Pp. 189200 in Brunton, C. H. C., Cocks, L. R. M., and Long, S. L., eds. Brachiopods. Past and present. Taylor & Francis, London.Google Scholar
Manceñido, M. O., Owen, E. F., and Sun, D. L.. 2007. Post-Paleozoic Rhynchonellida. Pp. 27272742 in Brachiopoda 6, Supplement. Part H of Selden, P. A., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Matzke, N. J., and Wright, A.. 2016. Inferring node dates from tip dates in fossil Canidae: the importance of tree priors. Biology Letters 12: 20160328.CrossRefGoogle ScholarPubMed
McKinney, M. L., and McNamara, K. J.. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.CrossRefGoogle Scholar
McNamara, K. J. 1983. The earliest Tegulorhynchia (Brachiopoda: Rhynchonellida) and its evolutionary significance. Journal of Paleontology 57:461473.Google Scholar
McNamara, K. J. 2012. Heterochrony: the evolution of development. Evolution: Education and Outreach 5:203218.Google Scholar
Mongiardino Koch, N., Garwood, R. J., and Parry, L. A.. 2021. Fossils improve phylogenetic analyses of morphological characters. Proceedings of the Royal Society of London B 288:20210044.Google ScholarPubMed
O'Reilly, J. E., and Donoghue, P. C. J.. 2018. The efficacy of consensus tree methods for summarizing phylogenetic relationships from a posterior sample of trees estimated from morphological data. Systematic Biology 67:354362.CrossRefGoogle ScholarPubMed
O'Reilly, J. E., Dos Reis, M., and Donoghue, P. C. J.. 2015. Dating tips for divergence-time estimation. Trends in Genetics 31:637650.CrossRefGoogle ScholarPubMed
O'Reilly, J. E., Puttick, M. N., Parry, L., Tanner, A. R., Tarver, J. E., Fleming, J., Pisani, D., and Donoghue, P. C. J.. 2016. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters 12:20160081.CrossRefGoogle ScholarPubMed
O'Reilly, J. E., Puttick, M. N., Pisani, D., and Donoghue, P. C. J.. 2018. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology 61:105118.CrossRefGoogle ScholarPubMed
Pálfy, J. 2003. The Pelsonian brachiopod fauna of the Balaton Highland. Geologica Hungarica, Series Palaeontologica 55:139158.Google Scholar
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.CrossRefGoogle Scholar
Peckmann, J., Campbell, K. A., Walliser, O. H., and Reitner, J.. 2007. A Late Devonian hydrocarbon-seep deposit dominated by dimerelloid brachiopods, Morocco. Palaios 22:114122.CrossRefGoogle Scholar
Peckmann, J., Kiel, S., Sandy, M. R., Taylor, D. G., and Goedert, J. L.. 2011. Mass occurrences of the brachiopod Halorella in Late Triassic methane-seep deposits, eastern Oregon. Journal of Geology 119:207220.CrossRefGoogle Scholar
Peckmann, J., Sandy, M. R., Taylor, D. G., Gier, S., and Bach, W.. 2013. An Early Jurassic brachiopod-dominated seep deposit enclosed by serpentinite, eastern Oregon, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 390:416.CrossRefGoogle Scholar
Püschel, H. P., O'Reilly, J. E., Pisani, D., and Donoghue, P. C. J.. 2020. The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates. Palaeontology 63:6783.CrossRefGoogle Scholar
Puttick, M. N., O'Reilly, J. E., Tanner, A. R., Fleming, J. F., Clark, J., Holloway, L., Lozano-Fernandez, J., Parry, L. A., Tarver, J. E., Pisani, D., and Donoghue, P. C. J.. 2017. Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society of London B 284:20162290.Google Scholar
Puttick, M. N., O'Reilly, J. E., Pisani, D., and Donoghue, P. C. J.. 2019. Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic model. Palaeontology 62:117.CrossRefGoogle Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A.. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901904.CrossRefGoogle ScholarPubMed
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.CrossRefGoogle Scholar
Reznick, D., Bryant, M. J., and Bashey, F.. 2002. r- and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83:15091520.CrossRefGoogle Scholar
Ronquist, F., and Huelsenbeck, J. P.. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:15721574.CrossRefGoogle ScholarPubMed
Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D. L., and Rasnitsyn, A. P.. 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Systematic Biology 61:973999.CrossRefGoogle Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P.. 2012b. MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61:539542.CrossRefGoogle Scholar
Ronquist, F., Lartillot, N., and Phillips, M. J.. 2016. Closing the gap between rocks and clocks using total-evidence dating. Philosophical Transactions of the Royal Society of London B 371:20150136.CrossRefGoogle ScholarPubMed
Sandy, M. R. 2010. Brachiopods from ancient hydrocarbon seeps and hydrothermal vents. Pp. 279314 in Kiel, S., ed. The vent and seep biota. Springer, Heidelberg.CrossRefGoogle Scholar
Savage, N. M., Manceñido, M. O., Owen, E. F., Carlson, S. J., Grant, R. E., Dagys, A. S., and Sun, D. L.. 2002. Rhynchonellida. Pp. 10271376 in Brachiopoda 4, Rhynchonelliformea. Part H of Kaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C., and Payne, J. L.. 2016. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42:127142.CrossRefGoogle Scholar
Schrago, C. G., Aguiar, B. O., and Mello, B.. 2018. Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data. Journal of Evolutionary Biology 31:14771484.CrossRefGoogle ScholarPubMed
Schreiber, H. A., Bitner, M. A., and Carlson, S. J.. 2013. Morphological analysis of phylogenetic relationships among extant rhynchonellide brachiopods. Journal of Paleontology 87:550569.CrossRefGoogle Scholar
Schreiber, H. A., Roopnarine, P. D., and Carlson, S. J.. 2014. Three-dimensional morphological variability of Recent rhynchonellide brachiopod crura. Paleobiology, 40:640658.CrossRefGoogle Scholar
Sclafani, J. A., Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2018. Effects of mass extinction and recovery dynamics on long-term evolutionary trends: a morphological study of Strophomenida (Brachiopoda) across the Late Ordovician mass extinction. Paleobiology 44:603619.CrossRefGoogle Scholar
Shen, S. Z., Jin, Y. G., Zhang, Y., and Weldon, E. A.. 2017. Permian brachiopod genera on type species of China. Pp. 651881 in Rong, J. Y., Jin, Y. G., Shen, S. Z., and Zhan, R. B., eds. Phanerozoic brachiopod genera of China. Science Press, Beijing.Google Scholar
Signor, P. W., and Lipps, J. H.. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America Special Paper 190:291–296.CrossRefGoogle Scholar
Simões, T. R., Caldwell, M. W., and Pierce, S. E.. 2020. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biology 18:191.CrossRefGoogle ScholarPubMed
Smith, M. R. 2019 Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biology Letters 15:20180632.CrossRefGoogle ScholarPubMed
Song, H. J., Wignall, P. B., Chu, D. L., Tong, J. N., Sun, Y. D., Song, H. Y., He, W. H., and Tian, L.. 2014. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Scientific Reports 4:4132.CrossRefGoogle ScholarPubMed
Soul, L. C., and Wright, D. F.. 2021. Phylogenetic comparative methods: a user's guide for paleontologists (Elements of paleontology). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Stadler, T., Kühnert, D., Bonhoeffer, S., and Drummond, A. J.. 2013. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proceedings of the National Academy of Sciences USA 110:228233.CrossRefGoogle Scholar
Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J., and Heath, T. A.. 2018. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. Journal of Theoretical Biology 447:4155.CrossRefGoogle ScholarPubMed
Sun, D. L., Xu, G. R., and Qiao, L.. 2017. Triassic brachiopod genera on type species of China. Pp. 8831011 in Rong, J. Y., Jin, Y. G., Shen, S. Z., and Zhan, R. B., eds. Phanerozoic brachiopod genera of China. Science Press, Beijing.Google Scholar
Sun, Y. D., Joachimski, M. M., Wignall, P. B., Yan, C. B., Chen, Y. L., Jiang, H. S., Wang, L. N., and Lai, X. L.. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 388:366370.CrossRefGoogle Scholar
Swofford, D. L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0a166. Sinauer Associates, Sunderland, Mass.Google Scholar
Vörös, A. 2010. Escalation reflected in ornamentation and diversity history of brachiopod clades during the Mesozoic marine revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 291:474480.CrossRefGoogle Scholar
Wagner, P. J. 2012. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biology Letters 8:143146.CrossRefGoogle ScholarPubMed
Wagner, P. J. 2019. On the probabilities of branch durations and stratigraphic gaps in phylogenies of fossil taxa when rates of diversification and sampling vary over time. Paleobiology 45:3055.CrossRefGoogle Scholar
Wagner, P. J., and Marcot, J. D.. 2010. Probabilistic phylogenetic inference in the fossil record: current and future applications. Paleontological Society Papers 16:189211.CrossRefGoogle Scholar
Wang, F. Y., Chen, J., Dai, X., and Song, H. J.. 2017. A new Dienerian (Early Triassic) brachiopod fauna from South China and implications for biotic recovery after the Permian–Triassic extinction. Papers in Palaeontology 3:425439.CrossRefGoogle Scholar
Warren, D. L., Geneva, A. J., and Lanfear, R.. 2017. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Molecular Biology and Evolution 34:10161020.Google Scholar
Williams, A., Brunton, C. H. C., and MacKinnon, D. I.. 1997. Morphology. Pp. 321422 in Brachiopoda 1, Introduction. Part H of Kaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Wright, A. M. 2019. A systematist's guide to estimating Bayesian phylogenies from morphological data. Insect Systematics and Diversity 3:2.CrossRefGoogle ScholarPubMed
Wright, A. M., and Hillis, D. M.. 2014. Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One 9:e109210.CrossRefGoogle ScholarPubMed
Wright, A. M., Lyons, K. M., Brandley, M. C., and Hillis, D. M.. 2015. Which came first: the lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. Journal of Experimental Zoology B 324:504516.CrossRefGoogle ScholarPubMed
Wright, A. M., Wagner, P. J., Wright, D. F.. 2021. Testing character evolution models in phylogenetic paleobiology: a case study with Cambrian echinoderms. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Wright, D. F. 2017. Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata). Journal of Paleontology 91:799814.CrossRefGoogle Scholar
Wu, H. T., Shi, G. R., and Sun, Y. L.. 2019. The latitudinal gradient of shell ornament—a case study from Changhsingian (Late Permian) brachiopods. Earth-Science Reviews 197:102904.CrossRefGoogle Scholar
Wu, H. T., Zhang, Y., and Sun, Y. L.. 2021. A brachiopod fauna from latest Permian to Induan of northern Guizhou, South China and its evolutionary pattern. Geological Journal. doi: 10.1002/gj.4141CrossRefGoogle Scholar
Xu, G. R. 1990. Phenetic-cladistic systematics and geographic patterns of Triassic rhynchonellids. Pp. 6779 in MacKinnon, D. I., Lee, D. E., and Campbell, J. D., eds. Brachiopods through time. Balkema, Rotterdam.Google Scholar
Yang, Z. Y., and Xu, G. R.. 1966. Triassic brachiopods of central Gueizhou (Kueichow) Province, China. China Industry Publishing House, Beijing.Google Scholar
Zhang, C., and Wang, M.. 2019. Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds. Royal Society Open Science 6:182062.CrossRefGoogle ScholarPubMed
Zhang, Z., Augustin, M., and Payne, J. L.. 2015. Phanerozoic trends in brachiopod body size from synoptic data. Paleobiology 41:491501.CrossRefGoogle Scholar