Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T19:16:51.375Z Has data issue: false hasContentIssue false

Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies

Published online by Cambridge University Press:  08 April 2016

C. Kevin Boyce*
Affiliation:
Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138

Abstract

Global information on Paleozoic, Mesozoic, and extant non-angiosperm leaf morphologies has been gathered to investigate morphological diversity in leaves consistent with marginal growth and to identify likely departures from such development. Two patterns emerge from the principal coordinates analysis of this data set: (1) the loss of morphological diversity associated with marginal leaf growth among seed plants after sharing the complete Paleozoic range of such morphologies with ferns and (2) the repeated evolution of more complex, angiosperm-like leaf traits among both ferns and seed plants. With regard to the first pattern, morphological divergence of fern and seed plant leaf morphologies, indirectly recognized as part of the Paleophytic-Mesophytic transition, likely reflects reproductive and ecological divergence. The leaf-borne reproductive structures that are common to the ferns and Paleozoic seed plants may promote leaf morphological diversity, whereas the separation of vegetative and reproductive roles into distinct organs in later seed plant groups may have allowed greater functional specialization—and thereby morphological simplification—as the seed plants came to be dominated by groups originating in more arid environments. With regard to the second pattern, the environmental and ecological distribution of angiosperm-like leaf traits among fossil and extant plants suggests that these traits preferentially evolve in herbaceous to understory plants of warm, humid environments, thus supporting inferences concerning angiosperm origins based upon the ecophysiology of basal extant taxa.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, J. M., and Anderson, H. M. 1985. Palaeoflora of southern Africa. Balkema, Rotterdam.Google Scholar
Asama, K. 1962. Evolution of the Shansi flora and origin of the simple leaf. Science Reports of the Research Institute of Tohoku University, series 2, special volume 5:247273.Google Scholar
Asama, K. 1985. Permian to Triassic floral change and some problems of the paleobiogeography, parallelism, mixed floras, and the origin of the angiosperms. Pp. 199218in Nakazawa, K. and Dickens, J. M., eds. The Tethys. Tokyo University Press, Tokyo.Google Scholar
Ash, S. R. 1987. The Upper Triassic red bed flora of the Colorado Plateau, Western United States. Journal of the Arizona-Nevada Academy of Science 22:95105.Google Scholar
Axsmith, B. J., Serbet, R., Krings, M., Taylor, T. N., Taylor, E. L., and Mamay, S. H. 2003. The enigmatic Paleozoic plants Spermopteris and Phasmatocycas reconsidered. American Journal of Botany 90:15851595.Google Scholar
Barkman, T. J., Chenery, G., McNeal, J. R., Lyons-Weiler, J., Ellisens, W. J., Moore, G., Wolfe, A. D., and dePamphilis, C. W. 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proceedings of the National Academy of Sciences USA 97:1316613171.CrossRefGoogle ScholarPubMed
Beck, C. B. 1976. Origin and early evolution of angiosperms. Columbia University Press, New York.Google Scholar
Berleth, T., Mattson, J., and Hardtke, C. S. 2000. Vascular continuity and auxin signals. Trends in Plant Science 5:387393.Google Scholar
Bond, W. J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36:227249.Google Scholar
Bose, M. N., Pal, P. K., and Harris, T. M. 1985. The Pentoxylon plant. Philosophical Transactions of the Royal Society of London B 310:77108.Google Scholar
Bowe, L. M., Coat, G., and dePamphilis, C. W. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proceedings of the National Academy of Sciences USA 97:40924097.Google Scholar
Boyce, C. K.In press. The evolutionary history of roots and leaves. In Zwieniecki, M. A. and Holbrook, N. M., eds. Long distance transport processes in plants. Elsevier, AmsterdamGoogle Scholar
Boyce, C. K., and Knoll, A. H. 2002. Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28:70100.Google Scholar
Burnham, R. J. 1993. Time resolution in terrestrial macrofloras: guidelines from modern accumulations. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in the fossil record. Short Courses in Paleontology 6:5778. Palentological Scoeity, Knoxville, Tenn.Google Scholar
Chaw, S.-M., Zharkikh, A., Sung, H. M., Lau, T. C., and Li, W. H. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18s rRNA sequences. Molecular Biology and Evolution 14:5668.Google Scholar
Chaw, S.-M., Parkinson, C. L., Cheng, Y., Vincent, T. M., and Palmer, J. D. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings of the National Academy of Sciences USA 97:40864091.Google Scholar
Collinson, M. E. 1996. “What use are fossil ferns?” 20 years on: with a review of the fossil history of extant pteridophyte families and genera. Pp. 349394in Camus, M. J., Gibby, M., and Johns, R. J., eds. Pteridology in perspective. Royal Botanic Gardens, Kew, England.Google Scholar
Cornet, B. 1986. The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii. Evolutionary Theory 7:231309.Google Scholar
Crane, P. R. 1985. Phylogenetic analysis of seed plants and the origin of the angiosperms. Annals of the Missouri Botanical Gardens 72:716793.CrossRefGoogle Scholar
Crane, P. R. 1996. The fossil history of Gnetales. International Journal of Plant Science 157(Suppl. to No. 6):S50S57.Google Scholar
Crane, P. R., and Upchurch, G. R. J. 1987. Drewria potomacensis gen. et. sp. nov. an Early Cretaceous member of the Gnetales from the Potomac Group of Virginia. American Journal of Botany 74:17221736.Google Scholar
Crepet, W. L. 2001. Plant-animal interactions: insect pollination. Pp. 426429in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology II. Blackwell Science, London.Google Scholar
Delevoryas, T., and Hope, R. C. 1971. A new Triassic cycad and its phyletic implications. Postilla 150:121.Google Scholar
Delevoryas, T., and Taylor, T. N. 1969. A probable pteridosperm with eremopterid foliage from the Allegheny Group of northern Pennsylvania. Postilla 133:114.Google Scholar
DiMichele, W. A., and Aronson, R. B. 1992. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution 46:807824.Google Scholar
DiMichele, W. A., and DeMaris, P. J. 1987. Structure and dynamics of a Pennsylvanian-age Lepidodendron forest: colonizers of a disturbed swamp habitat in the Herrin (No. 6) coal of Illinois. Palaios 2:146157.Google Scholar
DiMichele, W. A., and Hook, R. W. 1992. Paleozoic terrestrial ecosystems. Pp. 205325in Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Dobruskina, I. A. 1975. The role of peltaspermacean pteridosperms in Late Permian and Triassic floras. Paleontology Journal 9:536548.Google Scholar
Dobruskina, I. A. 1995. Keuper (Triassic) Flora from Middle Asia (Madygen, Southern Fergana). New Mexico Museum of Natural History and Science Bulletin 5:149.Google Scholar
Dolan, L., and Poethig, R. S. 1998. Clonal analysis of leaf development in cotton. American Journal of Botany 85:315321.Google Scholar
Doyle, J. A., and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. Pp. 139206in Beck, 1976.Google Scholar
Feild, T. S., Arens, N. C., and Dawson, T. E. 2003a. The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Science 164:S129S142.CrossRefGoogle Scholar
Feild, T. S., Franks, P. J., and Sage, T. L. 2003b. Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae). International Journal of Plant Science 164:313324.Google Scholar
Fenner, M. 1998. The phenology of growth and reproduction in plants. Perspectives in Plant Ecology, Evolution and Systematics 1:7891.Google Scholar
Foote, M. 1993. Contribution of individual taxa to overall morphological disparity. Paleobiology 19:403419.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foster, A. S. 1952. Foliar venation in angiosperms from an ontogenetic standpoint. American Journal of Botany 39:752766.Google Scholar
Galtier, J., and Béthoux, O. 2002. Morphology and growth habit of Dicksonites plunkenetii from the Upper Carboniferous of Graissessac (France). Geobios 35:525535.Google Scholar
Gillespie, W. M., and Pfefferkorn, H. W. 1986. Taeniopterid lamina on Phasmatocycas megasporophylls (Cycadales) from the Lower Permian of Kansas, U.S.A. Review of Palaeobotany and Palynology 49:99116.Google Scholar
Givnish, T. 1979. On the adaptive significance of leaf form. Pp. 375407in Solbrig, O. T., Jain, S., Johnson, G. B., and Raven, P. H., eds. Topics in plant population biology. Columbia University Press, New York.Google Scholar
Gower, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325338.Google Scholar
Hagemann, W., and Gleissberg, S. 1996. Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. Plant Systematics and Evolution 199:121152.Google Scholar
Halle, T. G. 1929. Some seed-bearing pteridosperms from the Permian of China. Kungliga Svenska Vetenskapsakademiens Handlingar 6:324.Google Scholar
Harris, T. M. 1926. The Rhaetic flora of Scoresby Sound. Meddelelser om Grönland 68:46147.Google Scholar
Harris, T. M. 1983. The stem of Pachypteris papillosa (Thomas &Bose) Harris. Botanical Journal of the Linnean Society 86:149159.CrossRefGoogle Scholar
Hasebe, M., et al. 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Sciences USA 91:57305734.Google Scholar
Hickey, L. J. 1974. A revised classification of the architecture of dicotyledonous leaves. Pp. 2539in Metcalfe, C. R. and Chalk, L., eds. Anatomy of the Dicotyledons, Vol. I, 2d ed.Clarendon, Oxford.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pp. 2168in Nitecki, M., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Kramer, K. U., and Green, P. S. 1990. I. Pteridophytes and gymnosperms. Springer, Berlin.Google Scholar
Leaf Architecture Working Group. 1999. Manual of leaf architecture: morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Smithsonian Institution, Washington, D.C.Google Scholar
Li, H., and Taylor, D. W. 1999. Vessel-bearing stems of Vasovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China. American Journal of Botany 86:15631575.Google Scholar
Li, X., ed. 1995. Fossil floras of China through the geologic ages. Guangdong Science and Technology Press, Guangzhou.Google Scholar
Li, X., and Yao, Z. 1983. Fructifications of gigantopterids from South China. Palaeontographica 185B:1126.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25:128.Google Scholar
Magallón, S., and Sanderson, M. J. 2002. Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. American Journal of Botany 89:19912006.Google Scholar
Mamay, S. H. 1976. Paleozoic origin of cycads. United States Geological Survey Professional Paper 934:148.Google Scholar
Mathews, S., and Donoghue, M. J. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947950.Google Scholar
McGhee, G. R. Jr. 1999. Theoretical morphology: the concept and its applications. Columbia University Press, New York.Google Scholar
Melville, R. 1969. Leaf venation patterns and the origin of the angiosperms. Nature 224:121125.Google Scholar
Niklas, K. J. 1994. Morphological evolution through complex domains of fitness. Proceedings of the National Academy of Sciences USA 91:67726779.Google Scholar
Poethig, R. S., and Sussex, I. M. 1985a. The developmental morphology and growth dynamics of the tobacco leaf. Planta 165:158169.Google Scholar
Poethig, R. S., and Sussex, I. M. 1985b. The cellular parameters of leaf development in tobacco: a clonal analysis. Planta 165:170184.Google Scholar
Pray, T. R. 1955. Foliar venation of angiosperms. II. Histogenesis of the venation of Liriodendron. American Journal of Botany 42:1827.Google Scholar
Pray, T. R. 1960. Ontogeny of the open dichotomous venation in the pinna of the fern Nephrolepis. American Journal of Botany 47:319328.CrossRefGoogle Scholar
Pray, T. R. 1962. Ontogeny of the closed dichotomous venation of Regnellidium. American Journal of Botany 49:464472.Google Scholar
Pryer, K. M., Smith, A. R., and Skog, J. E. 1995. Phylogenetic relationships of extant ferns based on evidence from morphology and rbcl sequences. American Fern Journal 85:205282.Google Scholar
Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V., and Chase, M. W. 1999. The earliest angiosperms: evidence from mitochondrial, plastid, and nuclear genomes. Nature 402:404407.Google Scholar
Retallack, G. J. 1977. Reconstructing Triassic vegetation of eastern Australasia: a new approach for the biostratigraphy of Gondwanaland. Alcheringa 1:247277.Google Scholar
Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., and Kerp, H. 2001. Evolution and function of leaf venation architecture: a review. Annals of Botany 87:553566.Google Scholar
Rydin, C., Mohr, B., and Friis, E. M. 2003. Cratonia cotyledon gen. et sp. nov: a unique Cretaceous seedling related to Welwitschia. Proceedings of the Royal Society of London B 270(Suppl.):S29S32.Google Scholar
Sachs, T. 1991. Pattern formation in plant tissues. Cambridge University Press, Cambridge.Google Scholar
Sakai, S. 2001. Phenological diversity in tropical forests. Population Ecology 43:7786.Google Scholar
Scott, A. C., and Galtier, J. 1985. Distribution and ecology of early ferns. Proceedings of the Royal Society of Edinburgh B 86:141149.Google Scholar
Shangyou, N., Rowley, D. B., and Ziegler, A. M. 1990. Constraints on the locations of Asian microcontinents in Palaeo-Tethys during the Late Paleozoic. Geological Society Memoir 12:397409.Google Scholar
Skog, J. E. 2001. Biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia 53:236269.Google Scholar
Soltis, P. S., Soltis, D. E., and Chase, M. W. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402404.Google Scholar
Surange, K. R. 1966. Pre-Cretaceous angiosperms. Proceedings of the Autumn School in Botany, Pp. 328331.Google Scholar
Surange, K. R., and Chandra, S. 1972. Fructifications of Glossopteridae from India. Palaeobotanist 21:117.Google Scholar
Surange, K. R., and Maheshwari, H. K. 1970. Some male and female fructifications of Glossopteridales from India. Palaeontographica 129:178192.Google Scholar
Takhtajan, A. 1976. Neoteny and the origin of flowering plants. Pp. 207219in Beck, 1976.Google Scholar
Taylor, D. W., and Hickey, L. J. 1996. Evidence for and implications of an herbaceous origin for angiosperms. Pp. 232266in Taylor, D. W. and Hickey, L. J., eds. Flowering plant origin, evolution, and phylogeny. Chapman and Hall, New York.Google Scholar
Taylor, T. N. 1988. Pollen and pollen organs of fossil gymnosperms. Pp. 177217in Beck, 1976.Google Scholar
Taylor, T. N., and Millay, M. A. 1979. Pollination biology and reproduction in early seed plants. Review of Palaeobotany and Palynology 27:329355.Google Scholar
Taylor, T. N., and Taylor, E. L. 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Trivett, M. L., and Pigg, K. B. 1996. A survey of reticulate venation among fossil and living plants. Pp. 831in Taylor, D. W. and Hickey, L. J., eds. Flowering plant origin, evolution and phylogeny. Chapman and Hall, New York.Google Scholar
Wagner, P. J. 2001. Constraints on the evolution of form. Pp. 147152in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology II. Blackwell Science, London.Google Scholar
Wagner, W. H. 1979. Reticulate veins in the systematics of modern ferns. Taxon 28:8795.Google Scholar
Wing, S. L., and Sues, H.-D. 1992. Mesozoic and Early Cenozoic terrestrial ecosystems. Pp. 327418in Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Wing, S. L., and Tiffney, B. H. 1987. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Review of Palaeobotany and Palynology 50:179210.Google Scholar
Winter, K.-U., Becker, A., Muenster, T., Kim, J. T., Saedler, H., and Theissen, G. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proceedings of the National Academy of Sciences USA 96:73427347.Google Scholar
Ziegler, A. M. 1990. Phytogeographic patterns and continental configurations during the Permian Period. In McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir 12:363379.Google Scholar
Ziegler, A. M., Eshel, G., Rees, P. M., Rothfus, T. A., Rowley, D. B., and Sunderlin, D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36:227254.Google Scholar
Zurakowski, K. A. and Gifford, E. M. 1988. Quantitative studies of pinnule development in the ferns Adiantum raddianum and Cheilanthes viridis. American Journal of Botany 75:15591570.Google Scholar
Zwieniecki, M. A., Melcher, P. J., Boyce, C. K., Sack, L., and Holbrook, N. M. 2002. Hydraulic architecture of leaf venation Laurus nobilis L. Plant, Cell and Environment 25:14451450.Google Scholar