Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T18:06:31.341Z Has data issue: false hasContentIssue false

The paradox of the first tier: an agenda for paleobiology

Published online by Cambridge University Press:  08 April 2016

Stephen Jay Gould*
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

Abstract

Nature's discontinuities occur both in the hierarchical structuring of genealogical individuals and in the distinct processes operating at different scales of time, here called tiers. Conventional evolutionary theory denies this structuring and attempts to render the larger scales as simple extrapolation from (or reduction to) the familiar and immediate—the struggle among organisms at ecological moments (conventional individuals at the first tier). I propose that we consider distinct processes at three separable tiers of time: ecological moments, normal geological time (trends during millions of years), and periodic mass extinctions.

I designate as “the paradox of the first tier” our failure to find progress in life's history, when conventional theory (first tier processes acting on organisms) expects it as a consequence of competition under Darwin's metaphor of the wedge. I suggest a resolution of the paradox: whatever accumulates at the first tier is sufficiently reversed, undone, or overriden by processes of the higher tiers. In particular, punctuated equilibrium at the second tier produces trends for suites of reasons unrelated to the adaptive benefits of organisms (conventional progress). Mass extinction at the third tier, a recurring process now recognized as more frequent, more rapid, more intense, and more different than we had imagined, works by different rules and may undo whatever the lower tiers had accumulated.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. 1983. Evolutionary case histories symposium. Abstracts. Palaeontol. Assoc. Annu. Meeting, University College, Swansea.Google Scholar
Alvarez, L., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:10951108.Google Scholar
Alvarez, W. and Muller, R. A. 1984. Evidence from crater ages for periodic impacts on the Earth. Nature 308:718720.CrossRefGoogle Scholar
Anonymous. 1969. What will happen to geology? Nature. 221:903.Google Scholar
Arnold, A. J. and Fristrup, K. 1982. The theory of evolution by natural selection: a hierarchical expansion. Paleobiology. 8:113129.Google Scholar
Ayala, F. J. 1983. Microevolution and macroevolution. Pp. 387402. In: Bendall, D. S., ed. Evolution from Molecules to Man. Cambridge Univ. Press; Cambridge.Google Scholar
Bury, J. B. 1920. The Idea of Progress. MacMillan; London.Google Scholar
Darwin, C. 1859. On the Origin of Species. John Murray; London.Google Scholar
Dawkins, R. and Krebs, J. R. 1979. Arms races between and within species. Proc. R. Soc. London. 205B:489511.Google Scholar
Dobzhansky, T. 1972. The ascent of man. Soc. Biol. 19:367378.Google Scholar
Doolittle, W. F. and Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature. 284:601603.CrossRefGoogle ScholarPubMed
Dover, G. 1982. Molecular drive: a cohesive mode of species evolution. Nature. 299:111117.CrossRefGoogle ScholarPubMed
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Gingerich, P. D. 1984. Darwin's gradualism and empiricism. Nature. 309:116.Google Scholar
Glaessner, M. F. 1961. Pre-Cambrian animals. Sci. Am. March:7278.CrossRefGoogle Scholar
Gould, S. J. 1982a. Darwinism and the expansion of evolutionary theory. Science. 216:380387.CrossRefGoogle ScholarPubMed
Gould, S. J. 1982b. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104. In: Milkman, R., ed. Perspectives on Evolution. Sinauer; Sunderland, Mass.Google Scholar
Gould, S. J. 1983. Losing the edge: the extinction of the .400 hitter. Vanity Fair (March), pp. 120, 264–278.Google Scholar
Gould, S. J. 1984a. Toward the vindication of punctuational change. Pp. 934. In: Berggren, W. A. and VanCouvering, J. A., eds. Catastrophes and Earth History. Princeton Univ. Press; Princeton, N.J.Google Scholar
Gould, S. J. 1984b. The Ediacaran experiment. Nat. Hist. 93(2):1423.Google Scholar
Gould, S. J. 1984c. The cosmic dance of Siva. Nat. Hist. 93(8).Google Scholar
Gould, S. J. and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology. 6:383396.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. London. 205B:581598.Google Scholar
Gould, S. J. and Vrba, E. 1982. Exaptation—a missing term in the science of form. Paleobiology. 8:415.CrossRefGoogle Scholar
Halstead, B. 1984. Neo-Darwinism rules. New Sci., May 3, p. 40.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or Why are there so many kinds of animals? Amer. Nat. 93:145159.CrossRefGoogle Scholar
Huxley, J. S. 1953. Evolution in Action. Chatto & Windus; London.Google Scholar
Jablonski, D. and Bottjer, D. J. 1983. Soft-substratum epifaunal suspension-feeding assemblages in the late Cretaceous: implications for the evolution of benthic communities. Pp. 747812. In: Tevesz, M. J. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Johnson, J. G. 1982. Occurrence of phyletic gradualism and punctuated equilibria through geologic time. J. Paleontol. 56:13291331.Google Scholar
Jones, J. S. 1981. An uncensored page of fossil history. Nature. 293:427428.Google Scholar
King, J. L. and Jukes, T. H. 1969. Non-Darwinian evolution. Science. 164:788.Google Scholar
Levinton, J. S. 1983. Stasis in progress: the empirical basis of macroevolution. Ann. Rev. Ecol. Syst. 14:103137.Google Scholar
Lister, A. 1984. Evolutionary case history from the fossil record. Nature. 309:114115.Google Scholar
Malmgren, B. A. and Kennett, J. P. 1981. Phyletic gradualism in a late Cenozoic planktonic foraminiferal lineage, DSDP Site 284, southwest Pacific. Paleobiology. 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology. 9:377389.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Mayr, E. 1982. The Growth of Biological Thought. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Nisbet, R. 1980. History of the Idea of Progress. Basic; New York.Google Scholar
Officer, C. B. and Drake, C. L. 1985. Terminal Cretaceous environmental events. Science. 227:11611167.Google Scholar
Orgel, L. E. and Crick, F. H. C. 1980. Selfish DNA: the ultimate parasite. Nature. 284:604607.CrossRefGoogle ScholarPubMed
Penny, D. 1983. Charles Darwin, gradualism and punctuated equilibrium. Syst. Zool. 32:7274.CrossRefGoogle Scholar
Raup, D. M. 1985. Magnetic reversals and mass extinction. Nature. 314:341343.CrossRefGoogle Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science. 215:15011503.CrossRefGoogle ScholarPubMed
Raup, D. M. and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proc. Nat. Acad. Sci. 81:801805.Google Scholar
Rensch, B. 1971. Biophilosophy. Columbia Univ. Press; New York.Google Scholar
Rhodes, F. H. T. 1984. Darwin's gradualism and empiricism, a reply. Nature. 309:116.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea floor spreading. J. Geol. 82:129143.Google Scholar
Schopf, T. J. M. 1981. Evidence from findings of molecular biology with regard to the rapidity of genomic change: implications for species durations. Pp. 91142. In: Niklas, K., ed. Paleobotany, Paleoecology and Evolution. Praeger; New York.Google Scholar
Schopf, T. J. M. and Hoffman, A. 1983. Punctuated equilibrium and the fossil record. Science. 219:438439.Google Scholar
Seilacher, A. 1983. Precambrian metazoan extinctions. Geol. Soc. Am. Abst. Prog. 15:683.Google Scholar
Sepkoski, J. J. Jr. and Raup, D. M. 1985. Periodicity in marine mass extinctions. In: Elliott, D., ed. Dynamics of Extinction. Wiley; New York. in press.Google Scholar
Signor, P. W. and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology. 10:229245.Google Scholar
Simberloff, D. 1983. Competition theory, hypothesis testing, and other community ecology buzzwords. Amer. Nat. 122:626.Google Scholar
Simberloff, D. 1984. The great god of competition. The Sciences 24(4):1622.Google Scholar
Simpson, G. G. 1949. The Meaning of Evolution. Yale Univ. Press; New Haven, Conn.Google Scholar
Smith, J. Maynard. 1983. Current controversies in evolutionary biology. Pp. 273286. In: Grene, M., ed. Dimensions of Darwinism. Cambridge Univ. Press; Cambridge.Google Scholar
Smith, J. Maynard. 1984. Palaeontology at the high table. Nature. 309:401402.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1984. Mass extinctions in the ocean. Sci. Am. 250(6):6472.Google Scholar
Stebbins, G. L. 1969. The Basis of Progressive Evolution. Univ. North Carolina Press; Chapel Hill.Google Scholar
Stebbins, G. L. and Ayala, F. J. 1981. Is a new evolutionary synthesis necessary? Science. 213:967971.Google Scholar
Turner, J. 1984. Why we need evolution by jerks. New Sci. Feb. 9, Pp. 3435.Google Scholar
Van Valen, Leigh. 1973. A new evolutionary law. Evol. Theory 1:130.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology. 3:245258.Google Scholar
Vrba, E. S. and Eldredge, N. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology. 10:146171.Google Scholar
Wake, D. B., Roth, G., and Wake, M. H. 1983. On the problem of stasis in morphological evolution. J. Theoret. Biol. 101:211224.Google Scholar
Williamson, P. G. 1981. Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature. 293:437443.Google Scholar