Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T11:21:34.210Z Has data issue: false hasContentIssue false

Paleoecological and stratigraphic controls on eurypterid Lagerstätten: a model for preservation in the mid-Paleozoic

Published online by Cambridge University Press:  04 May 2017

Matthew B. Vrazo
Affiliation:
Department of Geology, 500 Geology/Physics Building, University of Cincinnati, Cincinnati, Ohio 45221-0013, U.S.A. E-mail: [email protected], [email protected].
Carlton E. Brett
Affiliation:
Department of Geology, 500 Geology/Physics Building, University of Cincinnati, Cincinnati, Ohio 45221-0013, U.S.A. E-mail: [email protected], [email protected].
Samuel J. Ciurca Jr
Affiliation:
2457 Culver Road, Rochester, New York 14609, U.S.A. E-mail: [email protected].

Abstract

Recent studies of eurypterid paleoecology suggest that formation of eurypterid Lagerstätten in the mid-Paleozoic of Laurentia was controlled by the presence of an ecological–taphonomic window that recurred predictably in nearshore, marginal environments during transgressions. We tested this hypothesis by performing a high-resolution taxonomic, environmental, and stratigraphic survey and quantitative analysis of all Silurian–Lower Devonian eurypterid-bearing intervals in the Appalachian basin, the most prolific region for eurypterid remains in the world. Canonical correspondence analysis of sedimentological and faunal associations revealed a strong lithologic gradient between groupings of eurypterid genera and associated taxa across the basin, and a significant association of eurypterids with microbialites (thrombolites, stromatolites) and evaporitic structures. Field observations confirmed that, stratigraphically, eurypterids in the basin frequently occur above the microbialite structures and beneath evaporites and other indicators of increased salinity or subaerial exposure. Following interpretation of these features within a sequence stratigraphic framework, we present a preservational model in which (1) eurypterids inhabited nearshore settings following freshening conditions concomitant with minor transgressions, (2) their remains were subsequently buried by storms or microbialite sediment baffling, and (3) subsequent long-term preservation of tissues was facilitated by regression and cyclical shallowing-up successions that promoted hypersalinity and anoxia. In the central and southern region of the basin, where microbial structures and evidence for hypersalinity are less common, a similar pattern of cyclical shallowing-upward deposition within eurypterid-bearing units holds. Thus, eurypterid preservation appears to reflect a combination of ecological preferences and abiotic conditions that promoted inhabitation and eventual preservation within the same setting. This study provides the first quantitative support for a sea level–based control on preservation of eurypterids and adds to the growing body of evidence that suggests that analysis of exceptional preservation in the fossil record benefits from interpretation within a sequence stratigraphic framework.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alling, H. A., and Briggs, L. I.. 1961. Stratigraphy of upper Silurian Cayugan evaporites. AAPG Bulletin 45:515547.Google Scholar
Allison, P.A. 1990. Variation in rates of decay and disarticulation of echinodermata: implications for the application of actualistic data. Palaios 5:432440.Google Scholar
Anderson, E. J., and Goodwin, P. W.. 1980. Helderberg PACs. Guidebook for the Society of Economic Paleontologists and Mineralogists (Eastern Section) Field Trip. P. 32.Google Scholar
Andrews, H. E., Brower, J. C., Gould, S. J., and Reyment, R. A.. 1974. Growth and variation in Eurypterus remipes DeKay. Bulletin of the Geological Institution of the University of Uppsala, new series 4:81114.Google Scholar
Barnes, R. K. 1989. What, if anything, is a brackish-water fauna? Transactions of the Royal Society of Edinburgh (Earth Sciences) 80:235240.Google Scholar
Belak, R. 1980. The Cobleskill and Akron members of the Rondout Formation: late Silurian carbonate shelf sedimentation in the Appalachian basin, New York State. Journal of Sedimentary Research 50:11871204.Google Scholar
Bell, S. C., and Smosna, R.. 1999. Regional facies analysis and carbonate ramp development in the Tonoloway Limestone (upper Silurian; central Appalachians). Southeastern Geology 38:259278.Google Scholar
Boyer, J. N. 1994. Aerobic and anaerobic degradation and mineralization of 14C-chitin by water column and sediment inocula of the York River estuary, Virginia. Applied and Environmental Microbiology 60:174179.Google Scholar
Braddy, S. J. 2001. Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a “mass-moult-mate” hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology 172:115132.Google Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597616.Google Scholar
Brett, C. E. 1998. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241262.Google Scholar
Brett, C. E., Goodman, W. M., and LoDuca, S. T.. 1990. Sequences, cycles, and basin dynamics in the Silurian of the Appalachian foreland basin. Sedimentary Geology 69:191244.Google Scholar
Brett, C. E., Tepper, D. H., Goodman, W. M., LoDuca, S. T., and Eckert, B.-Y.. 1995. Revised stratigraphy and correlations of the Niagaran Provincial Series (Medina, Clinton, and Lockport groups) in the type area of western New York. U.S. Geological Survey Bulletin 2086:161.Google Scholar
Brett, C. E., Baird, G. C., and Speyer, S. E.. 1997. Fossil Lagerstätten: stratigraphic record of paleontological and taphonomic events. Pp. 340 in C. E. Brett and G. Baird, eds. Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D., and Kramer, A.. 2009. Sequence stratigraphy, cyclic facies, and lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 277:933.CrossRefGoogle Scholar
Caster, K. E., and Kjellesvig-Waering, E. N.. 1964. Upper Ordovician eurypterids of Ohio. Palaeontographica Americana 4:297358.Google Scholar
Ciurca, S. J. Jr. 1973. Eurypterid horizons and the stratigraphy of upper Silurian and Lower Devonian rocks of western New York State. New York State Geological Association, 45th Annual Meeting. Brockport, New York. Pp. D1–D14.Google Scholar
Ciurca, S. J. Jr 1978. Eurypterid horizons and the stratigraphy of upper Silurian and Lower Devonian rocks of central-eastern New York State. In D. F. Merriam, ed. New York State Geological Association 50th Annual Meeting. Syracuse, N.Y. Pp. 225249.Google Scholar
Ciurca, S. J. Jr 1990. Eurypterid biofacies of the Silurian–Devonian evaporite sequence: Niagara Penninsula, Ontario, Canada and New York State. Pp. D1D23 in G. G. Lash, ed. New York State Geological Association, 62nd Annual Meeting. Fredonia, New York.Google Scholar
Ciurca, S. J. Jr 2005. Eurypterids and facies changes within the Silurian/Devonian “Eurypterid Beds” of New York State. Pp. 113121 in D. W. Valentino, ed. New York State Geological Association 77th Annual Meeting. Oswego, N.Y.Google Scholar
Ciurca, S. J. Jr 2011. Silurian and Devonian eurypterid horizons in upstate New York. Pp. 139151 in N. Nelson, ed. New York State Geological Association 83rd Annual Meeting. Syracuse, N.Y.Google Scholar
Ciurca, S. J. Jr 2013. Microbialites within the eurypterid-bearing Bertie Group of western New York and Ontario, Canada. Pp. 154179 in G. Baird and M. Wilson, eds. New York State Geological Association 85th Annual Meeting. Fredonia, N.Y.Google Scholar
Ciurca, S. J. Jr., and Domagala, M.. 1988. Silurian algal mound/eurypterid association, New York State and Pennsylvania. Rochester Academy of Science 15th Annual Scientific Paper Session. Nazareth College of Rochester, N.Y. P. 45.Google Scholar
Ciurca, S. J. Jr., and Hamell, R. D.. 1994. Late Silurian sedimentation, sedimentary structures and paleoenvironmental settings within an eurypterid-bearing sequence (Salina and Bertie Groups), Western New York State and Southwestern Ontario, Canada. Pp. 457488 in C. E. Brett and J. Scatterday, eds. New York State Geological Association 66th Annual Meeting. Rochester, N.Y.Google Scholar
Clarke, J. M., and Ruedemann, R.. 1912. The Eurypterida of New York. New York State Museum Memoir 14:1439.Google Scholar
Cody, G. D., Gupta, N. S., Briggs, D. E. G., Kilcoyne, A. L. D., Summons, R. E., Kenig, F., Plotnick, R. E., and Scott, A. C.. 2011. Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology 39:255258.Google Scholar
Copeland, M. J., and Bolton, T. E.. 1985. Fossils of Ontario, Part 3. The Eurypterids and Phyllocarids. Royal Ontario Museum, Toronto, Canada.CrossRefGoogle Scholar
Cotter, E. C., and Inners, J. D.. 1986. Stop 1.5; Allenport. Pp. 27–39 in W. D. Sevon, ed. Selected Geology of Bedford and Huntington Counties: Guidebook for the 51st Annual Field Conference of Pennsylvania Geologists. Field Conference of Pennsylvania Geologists, Juniata University, Huntington, PA.Google Scholar
Cramer, B., Brett, C. E., Melchin, M. J., Mannik, P., Kleffner, M. A., Mclaughlin, P. I., Loydell, D. K., Muenecke, A., Jeppsson, L., Corradini, C., Brunton, F., and Saltzman, M. R.. 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia 44:185202.Google Scholar
Dennison, J. M., and Head, J. W.. 1975. Sealevel variations interpreted from the Appalachian basin Silurian and Devonian. American Journal of Science 275:10891120.Google Scholar
Dixon, O. A., and Jones, B.. 1978. Upper Silurian Leopold Formation in the Somerset-Prince Leopold Islands type area, Arctic Canada. Bulletin of Canadian Petroleum Geology 26:411423.Google Scholar
Dorobek, S. L., and Read, J. F.. 1986. Sedimentology and basin evolution of the Siluro-Devonian Helderberg Group, Central Appalachians. Journal of Sedimentary Research 56:601613.Google Scholar
Dunlop, J. A. 2010. Geological history and phylogeny of Chelicerata. Arthropod Structure and Development 39:124142.Google Scholar
Eagan, K. E., and Liddell, W. D.. 1997. Stromatolite biostromes as bioevent horizons: an example from the Middle Cambrian Ute Formation of the northeastern Great Basin. Pp. 493535 in C. E. Brett and G. C. Baird, eds. Paleontologic events: stratigraphic, ecologic and evolutionary implications. Columbia University Press, N.Y.Google Scholar
Edwards, D., Banks, H. P., Ciurca, S. J. Jr., and Laub, R. S.. 2004. New Silurian cooksonias from dolostones of north-eastern North America. Botanical Journal of the Linnean Society 146:399413.Google Scholar
Elick, J. M., and Siegel, M.. 2009. Paleoecology and cyclicity of the Tonoloway Formation and Keyser Formations: a guide to understanding limestone composition in Mandata, PA. Geological Society of America Abstracts with Programs 41:118.Google Scholar
Feldman, H. R., Archer, A. W., Kvale, E. P., Cunningham, C. R., Maples, C. G., and West, R. R.. 1993. A tidal model of Carboniferous Konservat-Lagerstaetten formation. Palaios 8:485498.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.Google Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E.. 2012. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences USA 109:51805184.Google Scholar
Goodman, P. T., Anderson, E. J., Goodwin, P. W., and Sullivan, K. S.. 1986. Small-scale episodic stratigraphic accumulation of the upper Silurian–Lower Devonian carbonate sequence in central Pennsylvania. Geological Society of America Abstracts with Programs 18:19.Google Scholar
Hamell, R. D., and Ciurca, S. J. Jr. 1986. Paleoenvironmental analysis of the Fiddlers Green Formation (late Silurian) in New York state. New York State Geological Association 58th Annual Meeting, Ithaca, N.Y. Pp. 199218.Google Scholar
Handford, C. R., and Loucks, R. G.. 1993. Carbonate depositional sequences and systems tracts—responses of carbonate platforms to relative sea-level change. Pp. 341 in R. G. Loucks and R. Sarg, eds. Carbonate sequence stratigraphy: recent advances and applications. American Association of Petroleum Geologists Memoir 57.Google Scholar
Hill, M. O., 1973. Reciprocal averaging: an eigenvector method of ordination. Journal of Ecology 61:237249.Google Scholar
Inners, J. D. 1997. Geology and mineral resources of the Allenwood and Milton quadrangles, Union and Northumberland Counties, Pennsylvania. Pennsylvania Geological Survey, 4th series, Atlas 144cd, Harrisburg.Google Scholar
Jones, B., and Kjellesvig-Waering, E. N.. 1985. Upper Silurian Eurypterids from the Leopold Formation, Somerset Island, Arctic Canada. Journal of Paleontology 59:411417.Google Scholar
Kaljo, D. 1970. The Silurian of Estonia. Institute of the Geological Academy of Science of Estonia, Tallinn.Google Scholar
Kiessling, W., and Aberhan, M.. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.Google Scholar
Kjellesvig-Waering, E. N., and Leutze, W. P.. 1966. Eurypterids from the Silurian of West Virginia. Journal of Paleontology 40:11091122.Google Scholar
Kluessendorf, J. 1994. Predictability of Silurian Fossil-Konservat-Lagerstätten in North America. Lethaia 27:337344.Google Scholar
Lamsdell, J., Briggs, D., Liu, H., Witzke, B., and McKay, R.. 2015. The oldest described eurypterid: a giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstatte of Iowa. BMC Evolutionary Biology 15:169.Google Scholar
Lamsdell, J. C., and Braddy, S. J.. 2010. Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters 6:265269.Google Scholar
Lau, K. 2009. Paleoecology and paleobiogeography of the New York Appalachian basin eurypterids. Undergraduate thesis. Yale, New Haven, Conn.Google Scholar
Laughrey, C. D. 1999. Silurian and transition to Devonian. Pp. 90107 in C. H. Shultz, ed. The geology of Pennsylvania. Pennsylvania Geological Survery, Harrisburg & Pittsburgh Geological Society, Pittsburgh.Google Scholar
Leutze, W. P. 1961. Arthropods from the Syracuse Formation, Silurian of New York. Journal of Paleontology 35:4964.Google Scholar
LoDuca, S. T., and Brett, C. E.. 1997. The Medusaegraptus epibole and Lower Ludlovian Konservat-Lagerstätten of eastern North America. Pp. 369406 in C. E. Brett and G. Baird, eds. Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Maples, C. G., and Schultze, H.-P.. 1988. Preliminary comparison of the Pennsylvanian assemblage of Hamilton, Kansas, with marine and nonmarine contemporaneous assemblages. Pp. 253273 in G. K. Mapes and R. H. Mapes, eds. Regional geology and paleontology of Upper Paleozoic Hamilton Quarry area in southeastern Kansas. Kansas Geological Survey, Lawrence, Kans.Google Scholar
Meidla, T., Tinn, O., and Männik, P.. 2014. Stop B8: Soeginina cliff. Pp. 194196 in H. Bauert, O. Hints, T. Meidla and P. Männik, eds. 4th Annual Meeting of IGCP 591, Estonia, 10–19 June 2014. Abstracts and Field Guide. University of Tartu, Tartu, Tartu, Estonia.Google Scholar
Noffke, N., and Awramik, S. M.. 2013. Stromatolites and MISS—Differences between relatives. GSA Today 23:49.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.. 2015. Vegan: community ecology package, Version R package version 2.2-1.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.Google Scholar
Perga, M.-E. 2011. Taphonomic and early diagenetic effects on the C and N stable isotope composition of cladoceran remains: implications for paleoecological studies. Journal of Paleolimnology 46:203213.Google Scholar
Plotnick, R. E. 1983. Patterns in the evolution of the eurypterids. Unpublished Ph.D. dissertation. University of Chicago, Chicago.Google Scholar
Plotnick, R. E. 1999. Habitat of Llandoverian–Lochkovian eurypterids. Pp. 106131 in A. J. Boucot, and J. D. Lawson, eds. Paleocommunities, a case study from the Silurian and Lower Devonian. Cambridge University Press, Cambridge.Google Scholar
R Core Team 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rickard, L. V. 1969. Stratigraphy of the upper Silurian Salina Group: New York, Pennsylvania, Ohio, Ontario (Geological Survey Map and Chart Series No. 12, New York State Museum and Science Service, Albany, NY.Google Scholar
Schröer, L., Vandenbroucke, T. R. A., Hints, O., Steeman, T., Verniers, J., Brett, C., Cramer, B. D., and McLaughlin, P. I.. 2016. A Late Ordovician age for the Whirlpool and Power Glen Formation, New York. Canadian Journal of Earth Sciences 53:739747.CrossRefGoogle Scholar
Selden, P. A. 1984. Autecology of Silurian eurypterids. In M. G. Bassett and J. D. Lawson, eds. Autecology of Silurian organisms. Palaeontological Association Special Papers in Palaeontology 32 3954.Google Scholar
Simpson, C., and Harnik, P. G.. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.Google Scholar
Smosna, R., Patchen, D., Warshauer, S., and Perry, W., J. 1977. Relationships between depositional environments, Tonoloway Limestone, and distribution of evaporites in the Salina Formation, West Virginia. In SG 5: Reefs and Evaporites—Concepts and Depositional Models. American Association of Petroleum Geologists, Tulsa, Okla. Pp. 125143.Google Scholar
Stott, C. A., Tetlie, O. E., Simon, J. B., Nowlan, G. S., Glasser, P. M., and Devereux, M. G.. 2005. A new Eurypterid (Chelicerata) from the Upper Ordovician of Manitoulin Island, Ontario, Canada. Journal of Paleontology 79:11661174.Google Scholar
Swartz, C. K., and Swartz, F. M.. 1930. Age of the Schwangunk conglomerate of eastern New York. American Journal of Science, Series 5, 20(120), 467474.Google Scholar
Swartz, C. K., and Swartz, F. M.. 1931. Early Silurian formations of southeastern Pennsylvania. Geological Society of America Bulletin 42:621662.CrossRefGoogle Scholar
Ter Braak, C. J. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:11671179.Google Scholar
Tetlie, O. E. 2007. Distribution and dispersal history of Eurypterida (Chelicerata). Palaeogeography, Palaeoclimatology, Palaeoecology 252:557574.Google Scholar
Tetlie, O. E., and Poschmann, M.. 2008. Phylogeny and palaeoecology of the Adelophthalmoidea (arthropoda; chelicerata; eurypterida). Journal of Systematic Palaeontology 6:237249.Google Scholar
Tetreault, D. K., Waddington, J., and Rudkin, D. M.. 1994. Eurypterids from the lower Silurian (Lower Llandoverian) Whirlpool Formation, southern Ontario. Fourth Canadian Palentology Conference, Programs and abstracts, pp. 14–15.Google Scholar
Tetlie, O. E., Brandt, D. S., and Briggs, D. E. G.. 2008. Ecdysis in sea scorpions (Chelicerata: Eurypterida). Palaeogeography, Palaeoclimatology, Palaeoecology 265:182194.Google Scholar
Tollerton, V. P. Jr. 1997. Eurypterids and associated fauna at Litchfield, a classic locality. Pp. 253264 in T. W. Rayne, D. G. Bailey and B. J. Tewksbury, eds. New York State Geological Association 69th Annual Meeting. Clinton, N.Y.Google Scholar
Tollerton, V. P. Jr 2004. Summary of a revision of New York State Ordovician eurypterids: implications for eurypterid palaeoecology, diversity and evolution. Transactions: Earth Sciences 94:235242.Google Scholar
Van der Voo, R. 1988. Paleozoic paleogeography of North America, Gondwana, and intervening displaced terranes: comparisons of paleomagnetism with paleoclimatology and biogeographical patterns. Geological Society of America Bulletin 100:11324.Google Scholar
Vannier, J., Wang, S. Q., and Coen, M.. 2001. Leperditicopid arthropods (Ordovician–Late Devonian): functional morphology and ecological range. Journal of Paleontology 75:7595.Google Scholar
Viira, V., and Einasto, R.. 2003. Wenlock-Ludlow boundary beds and conodonts of Saaremaa Island, Estonia. Proceedings of the Estonian Academy of Sciences (Geology) 52:213238.Google Scholar
Vrazo, M. B., and Braddy, S. J.. 2011. Testing the “mass-moult-mate” hypothesis of eurypterid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 311:6373.Google Scholar
Vrazo, M. B., Trop, J. M., and Brett, C. E.. 2014. A new eurypterid Lagerstätte from the upper Silurian of Pennsylvania. Palaios 29:431448.Google Scholar
Vrazo, M. B., Brett, C. E., and Ciurca, S. J. Jr. 2016. Buried or brined? Eurypterids and evaporites in the Silurian Appalachian basin. Palaeogeography Palaeoclimatology Palaeoecology 444:4859.CrossRefGoogle Scholar
Webster, M., Gaines, R. R., and Hughes, N. C.. 2008. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “Lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 264:100122.Google Scholar
Witzke, B. J., and Bunker, B. J.. 2006. Stratigraphy of the Wapsipinicon Group (Middle Devonian) in southeastern Iowa. Guidebook for the 36th Annual Field Conference of the Great Lakes Section, Society for Sedimentary Geology (SEPM), and the 67th Annual Tri-State Field Conference Iowa Geological Survey Guidebook Series No. 26:47–58.Google Scholar
Young, G. A., Rudkin, D. M., Dobrzanski, E. P., Robson, S. P., and Nowlan, G. S.. 2007. Exceptionally preserved Late Ordovician biotas from Manitoba, Canada. Geology 35:883886.Google Scholar
Young, G. A., Rudkin, D. M., Dobrzanski, E. P., and Robson, S. P.. 2012. Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba. Geoscience Canada 39:201213.Google Scholar