Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T21:22:07.189Z Has data issue: false hasContentIssue false

Paleocommunity Analysis of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia: Comparison with the Walcott Quarry and Implications for Community Variation in the Burgess Shale

Published online by Cambridge University Press:  06 November 2015

Lorna J. O’Brien
Affiliation:
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada. Department of Natural History-Palaeobiology, Royal Ontario Museum, Toronto, Ontario, M5S 2C6, Canada. E-mail: [email protected].
Jean-Bernard Caron
Affiliation:
Department of Natural History-Palaeobiology, Royal Ontario Museum, Toronto, Ontario, M5S 2C6, Canada Departments of Ecology and Evolutionary Biology and Earth Sciences, University of Toronto, Toronto, Ontario, M5S 3B2, Canada. E-mail: [email protected]

Abstract

The Tulip Beds locality on Mount Stephen (Yoho National Park, British Columbia) yields one of the most abundant and diverse (~10,000 specimens in 110 taxa) Burgess Shale fossil assemblages in the Canadian Rockies. Detailed semi quantitative and quantitative analyses of this assemblage suggest strong similarities with the Walcott Quarry on Fossil Ridge. Both assemblages are dominated by epibenthic, sessile, and suspension feeding taxa, mostly represented by arthropods and sponges and have comparable diversity patterns, despite sharing only about half the genera. However, the Tulip Beds has a higher relative abundance of suspension feeders and taxa of unknown affinity compared to the Walcott Quarry. These biotic variations are probably largely attributable to ecological and evolutionary differences between the two temporally distinct communities that adapted to similar, but not identical, environmental settings. For instance, the Tulip Beds is farther away from the Cathedral Escarpment than the Walcott Quarry. The Tulip Beds and Walcott Quarry assemblages are more similar to each other than either one is to the assemblages of the Chengjiang biota, although the relative diversity of major taxonomic groups and ecological patterns are similar in all assemblages. The conserved diversity patterns and ecological structures among sites suggest that the ecological composition of Cambrian Burgess Shale-type communities was relatively stable across wide geographic and temporal scales.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aitken, J. D., and McIlreath, I. A.. 1984. The cathedral reef escarpment; A Cambrian great wall with humble origins. Geos 13:1719.Google Scholar
Ausich, W. I., and Babcock, L. E.. 1998. The phylogenetic position of Echmatocrinus brachiatus, a probable octocoral from the Burgess Shale. Palaeontology 41:193202.Google Scholar
Ausich, W. I., and Babcock, L. E.. 2000. Echmatocrinus, a Burgess Shale animal reconsidered. Lethaia 33:9294.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H.. 2007. Autecology and the filling of ecospace: Key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Bengtson, P. 1988. Open nomenclature. Palaeontology 31:223227.Google Scholar
Botting, J. P. 2007. ‘Cambrian’ demosponges in the Ordovician of Morocco: Insights into the early evolutionary history of sponges. Geobios 40:737748.CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I.. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Briggs, D. E. G., and Fortey, R. A.. 2005. Wonderful strife: Systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31:94112.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K.. 2011. Paleoecologic megatrends in marine Metazoa. Annual Review of Earth and Planetary Sciences 39:241269.CrossRefGoogle Scholar
Caron, J. B., Gaines, R. R., Mãngano, M. G., Streng, M., and Daley, A. C.. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology 38:811814.CrossRefGoogle Scholar
Caron, J. B., Gaines, R. R., Aria, C., Mãngano, M. G., and Streng, M.. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications 5:3210. doi:10.1038/ncomms4210.CrossRefGoogle ScholarPubMed
Caron, J. B., and Jackson, D. A.. 2006. Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. Palaios 21:451465.CrossRefGoogle Scholar
Caron, J. B., and Jackson, D. A.. 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258:222256.CrossRefGoogle Scholar
Chen, H. 2012. VennDiagram: Generate high-resolution Venn and Euler plots. R package version 113.Google Scholar
Clausen, S., Hou, X. G., Bergström, J., and Franzén, C.. 2010. The absence of echinoderms from the Lower Cambrian Chengjiang fauna of China: Palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 294:133141.CrossRefGoogle Scholar
Collins, D., Briggs, D. E. G., and Conway Morris, S.. 1983. New Burgess Shale fossil sites reveal Middle Cambrian faunal complex. Science 222:163167.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1993. The fossil record and early evolution of the Metazoa. Nature 361:219225.CrossRefGoogle Scholar
Conway Morris, S 1986. The community structure of the Middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29:423467.Google Scholar
Conway Morris, S., and Peel, J. S.. 2008. The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland. Acta Palaeontologica Polonica 53:137148.CrossRefGoogle Scholar
Daley, A. C., and Budd, G. E.. 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53:721738.CrossRefGoogle Scholar
Dornbos, S. Q., and Chen, J. Y.. 2008. Community palaeoecology of the early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms. Palaeogeography, Palaeoclimatology, Palaeoecology 258:200212.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., and Erwin, D. H.. 2008. Compilation and network analyses of Cambrian food webs. PLoS Biology 6:e102. doi: 10.1371/journal.pbio.0060102.CrossRefGoogle ScholarPubMed
Fletcher, T. P., and Collins, D.. 1998. The Middle Cambrian Burgess Shale and its relationship to the Stephen Formation in the southern Canadian Rocky Mountains. Canadian Journal of Earth Sciences 35:413436.CrossRefGoogle Scholar
Fletcher, T. P., and Collins, D.. 2003. The Burgess Shale and associated Cambrian formations west of the Fossil Gully Fault Zone on Mount Stephen, British Columbia. Canadian Journal of Earth Sciences 40:18231838.CrossRefGoogle Scholar
Gabbott, S.E., Zalasiewicz, J., and Collins, D.. 2008. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. Journal of the Geological Society 165:307318.CrossRefGoogle Scholar
Gaines, R. R. 2011. A new Burgess Shale-type locality in the “thin” Stephen Formation, Kootenay National Park, British Columbia: stratigraphic and paleoenvironmental setting. Palaeontographica Canadiana 31:7388.Google Scholar
Gaines, R. R., Briggs, D. E. G., Orr, P. J., and Van Roy, P.. 2012b. Preservation of giant anomalocaridids in silica-chlorite concretions from the Early Ordovician of Morocco. Palaios 27:317325.CrossRefGoogle Scholar
Gaines, R. R., Briggs, D. E. G., and Yuanlong, Z.. 2008. Cambrian Burgess Shale–type deposits share a common mode of fossilization. Geology 36:755758.CrossRefGoogle Scholar
Gaines, R. R., and Droser, M. L.. 2010. The paleoredox setting of Burgess Shale-type deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 297:649661.CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E.. 2012a. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences 109:51805184.CrossRefGoogle ScholarPubMed
García-Bellido, D. C., and Collins, D.. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences 43:721742.CrossRefGoogle Scholar
García-Bellido, D. C., and Collins, D.. 2007. Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the middle Cambrian Burgess Shale, British Columbia, Canada. Palaeontology 50:693709.CrossRefGoogle Scholar
Han, J., Shu, D., Zhang, Z., Liu, J., Zhang, X., and Yao, Y.. 2006. Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits. Chinese Science Bulletin 51:24822492.CrossRefGoogle Scholar
Haug, J. T., Caron, J. B., and Haug, C.. 2013. Demecology and palaeo-eco-devo in the Cambrian — synchronized molting in arthropods from the Burgess Shale. BMC Biology 11:64.CrossRefGoogle ScholarPubMed
Haug, J. T., Mayer, G., Haug, C., and Briggs, D. E. G.. 2012. A carboniferous non-onychophoran lobopodian reveals long-term survival of a Cambrian morphotype. Current Biology 22:16731675.CrossRefGoogle ScholarPubMed
Legg, D. A., Sutton, M. D., Edgecombe, G. D., and Caron, J. B.. 2012. Cambrian bivalved arthropod reveals origin of arthrodization. Proceedings of the Royal Society B: Biological Sciences 279:46994704.CrossRefGoogle ScholarPubMed
Mángano, M. G. 2011. Trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: Unraveling ecologic and evolutionary controls. Palaeontographica Canadiana 31:89107.Google Scholar
McIlreath, I. A. 1977. Accumulation of a Middle Cambrian, deep-water limestone debris apron adjacent to a vertical, submarine carbonate escarpment, Southern Rocky Mountains, Canada. S.E.P.M. Special Publication 25:113124.Google Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.CrossRefGoogle Scholar
O’Brien, L. J., Caron, J. B., and Gaines, R. R.. 2014. Taphonomy and depositional setting of the Burgess Shale Tulip Beds, Mount Stephen, British Columbia. Palaios 29:309324.CrossRefGoogle Scholar
O’Brien, L.J., and Caron, J. B.. 2012. A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE 7:e29233.CrossRefGoogle ScholarPubMed
Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H., and Wagner, H.. 2011). Vegan: Community Ecology Package, R package version 2.0-2 ed.Google Scholar
Powell, W. G., Johnston, P. A., and Collom, C. J.. 2003. Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 201:249268.CrossRefGoogle Scholar
R Core Development Team. 2012. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 1.4 ed. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rigby, J. K., and Collins, D.. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia. Royal Ontario Museum Contributions in Science, p. 155.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge, 436 pp.CrossRefGoogle Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology, Harvard University, Special Publication, 283 pp.CrossRefGoogle Scholar
Sprinkle, J 1976. Classification and phylogeny of “pelmatozoan” echinoderms. Systematic Zoology 25:8391.CrossRefGoogle Scholar
Sprinkle, J., and Collins, D.. 1998. Revision of Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia. Lethaia 31:269282.CrossRefGoogle Scholar
Tokeshi, M. 1993. Species abundance patterns and community structure. Advanced Ecological Research 24:112186.Google Scholar
Van Iten, H., Zhu, M. Y., and Collins, D.. 2002. First report of Sphenothallus Hall, 1847 in the Middle Cambrian. Journal of Paleontology 76:902905.2.0.CO;2>CrossRefGoogle Scholar
Van Roy, P., and Briggs, D. E. G.. 2011. A giant Ordovician anomalocaridid. Nature 473:510513.CrossRefGoogle ScholarPubMed
Van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., Hariri, K. E., and Briggs, D. E. G.. 2010. Ordovician faunas of Burgess Shale type. Nature 465:215218.CrossRefGoogle ScholarPubMed
Vannier, J. 2012. Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem. PLoS ONE 7:e52200. doi: 10.1371/journal.pone.0052200.CrossRefGoogle ScholarPubMed
Villéger, S., Novack-Gottshall, P. M., and Mouillot, D.. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14:561568.CrossRefGoogle ScholarPubMed
Warnes, G. R. 2011. Gplots: Various R programming tools for plotting data, R package version 2.10.1 ed.Google Scholar
Williams, M., Vannier, J., Corbari, L., and Massabuau, J. C.. 2011. Oxygen as a driver of early arthropod micro-benthos evolution. PLoS ONE 6:e28183. doi: 10.1371/journal.pone.0028183.CrossRefGoogle ScholarPubMed
Zhang, X., Liu, W., and Zhao, Y.. 2008. Cambrian Burgess Shale-type Lagerstätten in South China: Distribution and significance. Gondwana Research 14:255262.CrossRefGoogle Scholar
Zhao, F., Caron, J. B., Bottjer, D. J., Hu, S., Yin, Z., and Zhu, M.. 2013. Comparative community paleoecology of the early Cambrian (Series 2, Stage 3) Chengjiang biota from China. Paleobiology 40:5069.CrossRefGoogle Scholar
Zhao, F., Caron, J. B., Hu, S., and Zhu, M.. 2009. Quantitative analysis of taphofacies and paleocommunities in the early Cambrian Chengjiang Lagerstätte. Palaios 24:826839.CrossRefGoogle Scholar
Zhao, F., Hu, S., Caron, J. B., Zhu, M., Yin, Z., and Lu, M.. 2012. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347:5465.CrossRefGoogle Scholar
Zhao, F., Zhu, M., and Hu, S.. 2010. Community structure and composition of the Cambrian Chengjiang biota. Science China Earth Sciences 53:17841799.CrossRefGoogle Scholar