Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T04:23:11.110Z Has data issue: false hasContentIssue false

Paleobiogeography, paleoecology, diversity, and speciation patterns in the Eublastoidea (Blastozoa: Echinodermata)

Published online by Cambridge University Press:  23 July 2020

Jennifer E. Bauer*
Affiliation:
University of Michigan Museum of Paleontology, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, Michigan48109-1085, U.S.A.; and Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida32611, U.S.A. E-mail address: [email protected]

Abstract

Understanding the distribution of taxa in space and time is key to understanding diversity dynamics. The fossil record provides an avenue to assess these patterns on vast timescales and through major global changes. The Eublastoidea were a conservatively plated Paleozoic echinoderm clade that range from the middle Silurian to the end-Permian. The geographic distribution of the eublastoids, as a whole, has been qualitatively assessed but has historically lacked a quantitative analysis. This is the first examination of the Eublastoidea using probabilistic methods within the R package BioGeoBEARS to assess macroevolutionary trends. Results provide an updated understanding of eublastoid diversity with new peaks and troughs in diversity through their evolutionary history. Lithology is examined in an evolutionary framework and does not have clear evolutionary trends, and there is much work to be done regarding environmental preferences. Biogeographic patterns do not recover precise group origins but do support the previous work that outlines Eublastoidea as a Laurentian clade. Sympatric speciation events dominant the clade's history but are likely exaggerated due to the highly combined areas. Vicariance events are rare and restricted to the Silurian and Devonian, and dispersal events are more common throughout the evolutionary history. Pathways allowing for lineage migrations are noted between southern Laurussia and China in the Devonian and Carboniferous and southern Laurussia and eastern Gondwana in the Carboniferous. Future work will include the addition of more non-Laurentian species into the estimated phylogeny to better estimate these global patterns.

Type
Articles
Copyright
Copyright © 2020 The Paleontological Society. All rights reserved

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.m63xsj3zs

References

Literature Cited

Badgley, C. 2010. Tectonics, topography, and mammalian diversity. Ecography 33:220231.Google Scholar
Bapst, D. W. 2012. Paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.Google Scholar
Barton, P. S., Cunningham, S. A., Manning, A. D., Gibb, H., Lindenmayer, D. B., and Didham, R. K.. 2013. The spatial scaling of beta diversity. Global Ecology and Biogeography 22:639647.Google Scholar
Bauer, J. E. 2018. Respiratory structure morphology, group origins, and phylogeny of Eublastoidea (Echinodermata). Ph.D. dissertation. University of Tennessee, Knoxville. https://trace.tennessee.edu/utk_graddiss/4949.Google Scholar
Bauer, J. E., Waters, J. A., and Sumrall, C. D.. 2019. Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata). Palaeontology 62:10031013.CrossRefGoogle Scholar
Beaver, H. H. 1967. Morphology. Pp. S300S345 in Beaver, H. H. et al. Echinodermata 1, Vol. 2. Part S of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Bell, M. A., and Lloyd, G. T.. 2014. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Palaeontology, Technical Report 58:379389.CrossRefGoogle Scholar
Blomberg, S. P., Garland, T. Jr., and Ives, A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.CrossRefGoogle ScholarPubMed
Breimer, A., and Macurda, D. B. Jr. 1972. The phylogeny of the fissiculate blastoids. Verhandlingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afd. Natuurkunde, eerste Reeks 26:1390.Google Scholar
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York.Google Scholar
Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2019. Evolutionary and biogeographical shifts in response to the Late Ordovician mass extinction. Palaeontology 62:267285.CrossRefGoogle Scholar
Dantas, S. M., Weckstein, J. D., Bates, J. M., Krabbe, N. K., Cadena, C. D., Robbins, M. B., Valderrama, E., and Aleixo, A.. 2016. Molecular systematics of the new world screechowls (Megascops: Aves, Strigidae): biogeographic and taxonomic implications. Molecular Phylogenetics and Evolution 94:626634.CrossRefGoogle ScholarPubMed
Foote, M. 1991. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, University of Michigan 28:101140.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.CrossRefGoogle Scholar
Höhna, S. M., Landis, J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., Huelsenbeck, J. P., and Ronquist, F.. 2016. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Systematic Biology 65:726736.CrossRefGoogle Scholar
Lam, A. R., Stigall, A. L., and Matzke, N. J.. 2018. Dispersal in the Ordovician: speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography, Palaeoclimatology, Palaeoecology 489:147165.CrossRefGoogle Scholar
Lam, A. R., Sheffield, S. L., and Matzke, N. J.. 2020. Ordovician paleobiogeography of diplopore-bearing blastozoan echinoderms. Paleobiology.Google Scholar
Lefebvre, B., Sumrall, C. D., Shroat-Lewis, R. A., Reich, M., Webster, G. D., Hunter, A. W., Nardin, E., Rozhnov, S. V., Guensburg, T. E., Touzeau, A., Noailles, F., and Sprinkle, J.. 2013. Palaeobiogeography of Ordovician echinoderms. Pp. 165190 in Harper, D. A. T. and Servais, T., eds. Early Palaeozoic Biogeography and Palaeobiogeography. Geological Society of London Memoir 38.Google Scholar
Macurda, D. B. Jr. 1967. Stratigraphic and geographic distribution. Pp. S 385S387 in Beaver, H. H. et al. Echinodermata 1, Vol. 2. Part S of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Maddison, W. P., and Maddison, D. R.. 2018. Mesquite: a modular system for evolutionary analysis, Version 3.51. http://www.mesquiteproject.org.Google Scholar
Matzke, N. J. 2013. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts. R package, Version 0.2.Google Scholar
O'Meara, B. C., Ané, C., Sanderson, M. J., and Wainwright, P. C.. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922933.CrossRefGoogle ScholarPubMed
Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877884.CrossRefGoogle ScholarPubMed
Paul, C. R. C. 1972. Morphology and function of exothecal pore-structures in cystoids. Palaeontology 15:128.Google Scholar
Poropat, S. F., Mannion, P. D., Upchurch, P., Hocknull, S. A., Kear, B. P., Kundrat, M., Tischler, T. R., Sloan, T., Sinapius, G. H., Elliott, J. A., and Elliott, D. A.. 2016. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography. Scientific Reports 6:34467.CrossRefGoogle ScholarPubMed
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., and Suchard, M. A.. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901904.CrossRefGoogle Scholar
R Core Team. 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.CrossRefGoogle Scholar
Ronquist, F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46:195203.CrossRefGoogle Scholar
R Studio Team. 2015. RStudio: integrated development for R. RStudio, Inc., Boston, Mass. http://www.rstudio.com.Google Scholar
Sheffield, S. L., and Sumrall, C. D.. 2019. The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology 93:740752.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Special publication, Museum of Comparative Zoology, Harvard University, Cambridge.Google Scholar
Stigall, A. L., Bauer, J. E., Lam, A. R., and Wright, D. F.. 2017. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Global and Planetary Change 148:242257.CrossRefGoogle Scholar
Sumrall, C. D., and Waters, J. A.. 2012. Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived Blastozoa. Journal of Paleontology 86:956972.CrossRefGoogle Scholar
Sumrall, C. D., and Zamora, S.. 2018. New Upper Ordovician edrioasteroids from Morocco. Geological Society of London Special Publication 485:SP4856.Google Scholar
Sumrall, C. D., Deline, B., Colmenar, J., Sheffield, S. L., and Zamora, S.. 2015. New data on late Ordovician (Katian) echinoderms from Sardinia, Italy. Pp. 159162 in Zamora, S. and Rábano, I., eds. Progress in echinoderm palaeobiology. Cuademos del Museo Geominero 19. Instituto Geológico y Minero de España, Madrid.Google Scholar
Torsvik, T. H., and Cocks, L. R. M.. 2016a. Silurian. Pp. 124137 in Earth history and paleobiogeography. Cambridge University Press, Cambridge.Google Scholar
Torsvik, T. H., and Cocks, L. R. M.. 2016b. Devonian. Pp. 138158 in Earth history and paleobiogeography. Cambridge University Press, Cambridge.Google Scholar
Torsvik, T. H., and Cocks, L. R. M.. 2016c. Carboniferous. Pp. 159177 in Earth history and paleobiogeography. Cambridge University Press, Cambridge.Google Scholar
Torsvik, T. H., and Cocks, L. R. M.. 2016d. Permian. Pp. 178194 in Earth history and paleobiogeography. Cambridge University Press, Cambridge.Google Scholar
Toussaint, E. F. A., and Balke, M.. 2016. Historical biogeography of Polyura butterflies in the oriental Palaeotropics: trans-archipelagic routes and South Pacific island hopping. Journal of Biogeography 43:15601572.CrossRefGoogle Scholar
Waters, J. A. 1988. The evolutionary palaeoecology of the Blastoidea. Pages 215233 in Paul, C.R.C and Smith, A.B., eds., Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford.Google Scholar
Waters, J. A. 1990. The paleobiogeography of the Blastoidea (Echinodermata). In McKerrow, W.S. and Scotese, C.R., eds., Palaeozoic Palaeobiogeography and Biogeography: Geological Society of London Memoir 12:339352.Google Scholar
Waters, J. A., Maples, C. G., Lane, N. G., Marcus, S., Zhou-Ting, L., Lujun, L., Hong-Fei, H., and Jin-Xing, W.. 2003. A quadrupling of Famennian pelmatozoan diversity: new Late Devonian blastoids and crinoids from Northwest China. Journal of Paleontology 77:922948.Google Scholar
Whittaker, R. H. 1972. Evolution and the measurement of species diversity. Taxonomy, Phylogeny and Biogeography of Beetles and Ants 21:213251.Google Scholar
Zamora, S., Lefebvre, B., Álvaro, J. J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J.-P., Nardin, E., Parsley, R., Rozhnov, S., Sprinkle, J., Sumrall, C. D., Viscaïno, D., and Smith, A. B.. 2013. Cambrian echinoderm diversity and palaeobiogeography. Pp. 157171 in Harper, D. A. T. and Servais, T. eds. Early Palaeozoic biogeography and palaeogeography. Geological Society of London Memoir 38.Google Scholar
Zamora, S., Sumrall, C. D., Zhu, X. J., and Lefebvre, B.. 2017. A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata). Geological Magazine 154:465475.Google Scholar