Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T16:24:00.513Z Has data issue: false hasContentIssue false

Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region

Published online by Cambridge University Press:  08 April 2016

Shen Shu-Zhong
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, P. R. China. E-mail: [email protected]
G. R. Shi
Affiliation:
School of Ecology and Environment, Deakin University, Melbourne Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia. E-mail: [email protected]

Abstract

Spatial and temporal variations in biological diversity are critical in understanding the role of biogeographical regulation (if any) on mass extinctions. An analysis based on a latest database of the stratigraphic ranges of 89 Permian brachiopod families, 422 genera, and 2059 species within the Boreal, Paleoequatorial, and Gondwanan Realms in the Asian–western Pacific region suggests two discrete mass extinctions, each possibly with different causes. Using species/family rarefaction analysis, we constructed diversity curves for late Artinskian–Kungurian, Roadian–Wordian, Capitanian, and Wuchiapingian intervals for filtering out uneven sampling intensities. The end-Changhsingian (latest Permian) extinction eliminated 87–90% of genera and 94–96% of species of Brachiopoda. The timing of the end-Changhsingian extinction of brachiopods in the carbonate settings of South China and southern Tibet indicates that brachiopods suffered a rapid extinction within a short interval just below the Permian/Triassic boundary.

In comparison, the end-Guadalupian/late Guadalupian extinction is less profound and varies temporally in different realms. Brachiopods in the western Pacific sector of the Boreal Realm nearly disappeared by the end-Guadalupian but experienced a relatively long-term press extinction spanning the entire Guadalupian in the Gondwanan Realm. The end-Guadalupian brachiopod diversity fall is not well reflected at the timescale used here in the Paleoequatorial Realm because the life-depleted early Wuchiapingian was overlapped by a rapid radiation phase in the late Wuchiapingian. The Guadalupian fall appears to be related to the dramatic reduction of habitat area for the brachiopods, which itself is associated with the withdrawal of seawater from continental Pangea and the closure of the Sino-Mongolian seaway by the end-Guadalupian.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Archbold, N. W. 1999. Permian Gondwanan correlations: the significance of the Western Australian marine Permian. Journal of African Earth Sciences 29:6375.Google Scholar
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K., and Wang, W. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280:10391045.Google Scholar
Briggs, D. J. C. 1998. Permian Productidina and Strophalosiidina from the Sydney-Bowen Basin and New England Orogen: systematics and biostratigraphic significance. Memoir of the Association of Australasian Palaeontologists No. 19.Google Scholar
Cao, C. Q., and Wang, W. 2001. Organic and inorganic carbon isotope patterns across the Permian-Triassic boundary in the Meishan section, South China. PaleoBios 21(Suppl. to No. 2):39.Google Scholar
Dunbar, C. O. 1955. Permian brachiopod faunas of central East Greenland. Meddelelser om Grönland 110(3):1169.Google Scholar
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.Google Scholar
Erwin, D. H. 1996 Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. Pp. 398418in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.Google Scholar
Garzanti, E., Nicora, A., Tintori, A., Sciunnach, D., and Angiolini, L. 1994. Late Palaeozoic stratigraphy and petrography of the Thini Chu Group (Manang, central Nepal): sedimentary record of Gondwana glaciation and rifting of Neotethys. Rivista Italiana di Paleontologia e Stratigrafia 100:155194.Google Scholar
Garzanti, E., Angiolini, L., and Sciunnach, D. 1996. The Permian Kuling Group (Spiti, Lahaul and Zanskar; NW Himalaya): sedimentary evolution during rift/drift transition and initial opening of Neo-Tethys. Rivista Italiana di Paleontologia e Stratigrafia 102:175200.Google Scholar
Grunt, T. A., and Shi, G. R. 1997. A hierarchical biogeographical classification of the Permian global marine biogeography. In Jin, Y. G. and Dineley, D., eds. Palaeontology and historical geology. Proceedings of the 30th International Geological Congress 12:217. VSP, Utrecht.Google Scholar
Gruszczynski, M., Halas, S., Hoffman, A., and Malkpwski, K. 1989. A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition. Nature 337:6468.Google Scholar
Hallam, A. 1989. The case for sea-level changes as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London B 325:437455.Google Scholar
Harrington, H. J. 1962. Palaeogeographic development of South America. AAPG Bulletin 46:17731814.Google Scholar
Holser, W. T., and Magaritz, M. 1987. Events near the Permian-Triassic boundary. Modern Geology 11:155180.Google Scholar
Jablonski, D. 1985. Marine regression and mass extinctions: a test using the modern biota. Pp. 335–254 in Valentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J.Google Scholar
Jin, Y. G., Zhang, J., and Shang, Q. H. 1994. Two phases of the end-Permian mass extinction. Canadian Society of Petroleum Geologists Memoir 17:813822.Google Scholar
Jin, Y. G., Shen, S. Z., Zhu, Z. L., Mei, S. L., and Wang, W. 1996. The Selong section, candidate of the global stratotype section and point of the Permian-Triassic boundary. Pp. 127137in Yin, H. F., ed. The Paleozoic and Mesozoic boundary candidate of global stratotype section and point of the Permian-Triassic boundary. China University of Geosciences Press, Wuhan.Google Scholar
Jin, Y. G., Wardlaw, B. R., Glenister, B. F., and Kotlyar, G. V. 1997. Permian chronostratigraphic subdivisions. Episodes 20:1015.Google Scholar
Jin, Y. G., Mei, S. L., Wang, W., Wang, X. D., Shen, S. Z., Shang, Q. H., and Chen, Z. Q. 1998. On the Lopingian Series of the Permian System. In Jin, Y. G., Wardlaw, B. R., and Wang, Y., eds. Permian stratigraphy, environments and resources, Vol. 2. Stratigraphy and environments. Palaeoworld 9:118. Press of University of Science and Technology of China, Hefei.Google Scholar
Jin, Y. G., Wang, Y., Wang, W., Shang, Q. H., Cao, C. Q., and Erwin, D. H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289:432436.Google Scholar
Jin, Y. G., Cao, C. Q., and Shen, S. Z. 2001. Latest Changhsingian fossils around the Yunkai volcanoes of South China. PaleoBios 21(Suppl. to No. 2):75.Google Scholar
Malkowski, K., Gruszcsynski, M., Hoffman, A., and Halas, S. 1989. Oceanic stable isotope composition and a scenario for the Permo-Triassic crisis. Historical Biology 2:289309.Google Scholar
Marshall, C. R. 1995. Distinguishing between sudden and gradual extinctions in the fossil record: predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology 23:731734.Google Scholar
Mei, S. L., Jin, Y. G., and Wardlaw, B. R. 1998. Conodont succession of the Guadalupian-Lopingian boundary strata in Laibin of Guangxi, China and West Texas, USA. In Jin, Y. G., Wardlaw, B. R., and Wang, Y., eds. Permian stratigraphy, environments and resources. Palaeoworld Special Issue 9:5376. Press of University of Science and Technology of China, Hefei.Google Scholar
Mishra, H. K. 1996. Comparative petrological analysis between the Permian coals of India and Western Australia: palaeoenvironments and thermal history. Palaeogeography, Palaeoclimatology, Palaeoecology 125(1–4):199216.Google Scholar
Nakazawa, K., Kapoor, H. M., Ishii, K. I., Bando, Y., Okimura, Y., and Tokuoka, T. 1975. The Upper Permian and the Lower Triassic in Kashmir, India. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy 42(1).Google Scholar
Nakamura, K., Shimizu, D., and Liao, Z. T. 1985. Permian palaeobiogeography of brachiopods based on the faunal provinces. Pp. 185198in Nakazawa, K. and Dickins, J. M., eds. The Tethys: her paleogeography and paleobiogeography from Paleozoic to Mesozoic. Tokai University Press, Tokyo.Google Scholar
Nakamura, K., Tazawa, J., and Kumon, F. 1992. Permian brachiopods of the Kapp Starostin Formation, west Spitsbergen. Pp. 7795in Nakamura, K., ed. Investigations on the upper Carboniferous-Upper Permian succession of West Spitsbergen 1989–1991. Hokkaido University, Sapporo.Google Scholar
Rampino, M. R., and Adler, A. C. 1998. Evidence for abrupt latest Permian mass extinction of foraminifera: results of test for the Signor-Lipps effect. Geology 26:415418.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.Google Scholar
Raup, D. M. 1991. The future of analytical paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:207216. Paleontological Society, Knoxville, Tenn.Google Scholar
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. Journal of Geology 82:129143.Google Scholar
Sheehan, P. M., and Coorough, P. J. 1990. Brachiopod zoogeography across the Ordovician-Silurian extinction event. In McKerroe, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society of London Memoir 12:181187.Google Scholar
Shen, S. Z., and He, X. L. 1991. Changhsingian brachiopod assemblage sequence in Zhongliang Hill, Chongqing. Journal of Stratigraphy 15:189196.Google Scholar
Shen, S. Z., and Jin, Y. G. 1999. Brachiopods from the Permian-Triassic boundary beds at the Selong Xishan section, Xizang (Tibet), China. Journal of Asian Earth Science 17:547559.Google Scholar
Shen, S. Z., and Shi, G. R. 1996. Diversity and extinction patterns of Permian Brachiopoda of South China. Historical Biology 12:93110.Google Scholar
Shen, S. Z., and Shi, G. R. 2000. Wuchiapingian (early Lopingian, Permian) global brachiopod palaeobiogeography: a quantitative approach. Palaeogeography, Palaeoclimatology, Palaeoecology 162:299318.Google Scholar
Shen, S. Z., Archbold, N. W., Shi, G. R., and Chen, Z. Q. 2000. Permian brachiopods from the Selong Xishan section, Xizang (Tibet), China, Part 1. Stratigraphy, Strophomenida, Productida and Rhynchonellida. Geobios 33:725752.Google Scholar
Shen, S. Z., Archbold, N. W., and Shi, G. R. 2001. A Lopingian (Late Permian) brachiopod fauna from the Qubuerga Formation at Shengmi in the Mount Qomolangma region of Southern Xizang (Tibet), China. Journal of Palaeontology 75:274283.Google Scholar
Shen, S. Z., Shi, G. R., and Archbold, N. W.In press. Lopingian (Late Permian) brachiopods from the Qubuerga Formation at the Qubu section in the Mt. Qomolangma region, southern Tibet (Xizang), China. Palaeontographica.Google Scholar
Shi, G. R., and Grunt, T. A. 2000. Permian Gondwanan-Boreal biotic interchanges: general features and possible migration mechanisms, with special reference to the brachiopod faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 155:239263.Google Scholar
Shi, G. R., and Shen, S. Z. 1998. A Changhsingian (Late Permian) brachiopod fauna from Son La, northwest Vietnam. Journal of Asian Earth Science 16:501511.Google Scholar
Shi, G. R., and Shen, S. Z. 1999. A compendium of Permian brachiopod faunas of the western Pacific Regions, Vol. 7. Analytic data and summary. Technical Paper 1999/2. Deakin University, Melbourne.Google Scholar
Shi, G. R., and Shen, S. Z. 2000. Asian-western Pacific Permian brachiopod in space and time: biogeography and extinction patterns. Pp. 327352in Yin, H. F., Dickens, J. M., Shi, G. R., and Tong, J. N., eds. Permian-Triassic evolution of Tethys and western cir-cum-Pacific. Elsevier, Amsterdam.Google Scholar
Shi, G. R., Archbold, N. W., and Zhan, L. P. 1995. Distribution and characteristics of mixed (transitional) mid-Permian (late Artinskian–Ufimian) marine faunas in Asia and their palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 114:241271.Google Scholar
Shimizu, D. 1981. Upper Permian brachiopod fossils from Guryul Ravine and the Spur three kilometers north of Barus. Palaeontologica Indica, new series 46:6785.Google Scholar
Signor, P. W., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. In Silver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroid and comets on the earth. Geological Society of America Special Paper 190:291296.Google Scholar
Simberloff, D. S. 1972. Models in biogeography. Pp. 160191in Schopf, T. J. M., ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Stanley, S. M., and Yang, X. 1994. A double mass extinction at the end of the Palaeozoic Era. Science 266:13401344.Google Scholar
Stemmerik, L. 1988. Discussion: brachiopod zonation and age of the Permian Kapp Starostin Formation (central Spitsbergen). Polar Research 6:179180.Google Scholar
Tipper, J. C. 1979. Rarefaction and rarefiction—the use and abuse of a method in paleoecology. Paleobiology 5:423434.Google Scholar
Valentine, J. W., and Moores, E. M. 1973. Provinciality and diversity across the Permian-Triassic boundary. In Logan, A. and Hills, L. V., eds. The Permian and Triassic Systems and their mutual boundary. Canadian Society of Petroleum Geologists Memoir 2:759766.Google Scholar
Veevers, J. J., Conaghan, P. J., and Powell, C. M. 1994. Eastern Australia. In Veevers, J. J. and Powell, C.M., eds. Permian-Triassic Pangean basins and foldbelts along Panthalassan margin of Gondwanaland. Geological Society of America Memoir 184:1145.Google Scholar
Visser, J. N. J. 1995. Post glacial Permian stratigraphy and geography of southern and central Africa: boundary conditions for climatic modelling. Palaeogeography, Palaeoclimatology, Palaeoecology 118:213243.Google Scholar
Wang, W., Shen, S. Z., and Zhu, Z. L. 1997. Carbon isotope characters of the Permian Triassic boundary section at Selong, Xizang (Tibet), China and their significance. Chinese Science Bulletin 4:406408.Google Scholar
Wang, X. D., and Sugiyama, T. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285294.Google Scholar
Wang, Y., and Jin, Y. G. 2000. Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 160:3544.Google Scholar
Wang, Y. G., Chen, C. Z., Rui, L., Wang, Z. H., Liao, Z. T., and He, J. W. 1989. A potential global stratotype of Permian-Triassic boundary. Pp. 221229in Developments in geoscience. Chinese Academy of Sciences, contribution to 28th International Geological Congress, 1989, Washington, D.C.Science Press, Beijing.Google Scholar
Waterhouse, J. B., and Bonham-Carter, G. F. 1975. Global distribution and character of Permian biomes based on brachiopod assemblages. Canadian Journal of Earth Sciences 12:10851146.Google Scholar
Wignall, P. B., and Hallam, A. 1996. Facies changes and the end-Permian mass extinction in S.E. Sichuan, China. Palaios 11:587596.Google Scholar
Yang, Z. Y., Yin, H. F., Wu, S. B., Yang, F. Q., Ding, M. H., and Xu, G. R. 1987. Permian-Triassic boundary stratigraphy and fauna of South China. PRC Ministry of Geology and Mineral Resources, Geological Memoirs, series 2, No. 6. Geological Publishing House, Beijing.Google Scholar
Yin, H. F. 1985. On the transitional bed and the Permian-Triassic boundary in South China. Newsletter on Stratigraphy 15:1327.Google Scholar
Young, G. C., and Laurie, J. R. 1996. An Australian Phanerozoic timescale. Oxford University Press, Melbourne.Google Scholar
Zakharov, Y., and Oleinikov, A. V. 1994. New data on the problem of the Permian-Triassic boundary in the Far East. In Embry, A. F. and Beauchamp, B., eds. Pangea: global environments and resources. Canadian Society of Petroleum Geologists Memoir 17:845856.Google Scholar
Zakharov, Y., Kotlyar, G. V., and Oleinikov, A. V. 1995. Late Dorashamian (Late Changxingian) invertebrates of the Far East and Permian to Triassic volcanism in the western Circum Pacific. Geology of Pacific Ocean 12:4760.Google Scholar
Ziegler, A. M., Hulver, M. L., and Roeley, D. B. 1997. Permian world topography and climate. Pp. 111146in Martini, I. P., ed. Late glacial and postglacial environmental changes: quaternary, carboniferous–Permian and Proterozoic. Oxford University Press, New York.Google Scholar