Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T23:43:19.405Z Has data issue: false hasContentIssue false

Paedomorphosis in edrioasteroid echinoderms

Published online by Cambridge University Press:  08 April 2016

James Sprinkle
Affiliation:
Department of Geological Sciences, University of Texas; Austin, Texas 78712
Bruce M. Bell
Affiliation:
Science Service, New York State Museum; Albany, New York 12234

Abstract

Three genera of the echinoderm class Edrioasteroidea comprise the suborder Cyathocystina; each is small, has five short straight ambulacra, few thecal plates, and commonly has a modified peripheral rim with tightly sutured or fused plates. The cyathocystids appear to have evolved by paedomorphosis; they have become sexually mature “adults” while retaining a morphology similar to juveniles of isorophid edrioasteroids. This mode of evolution may have been beneficial in colonizing shallow water, nearshore, current-swept environments.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arendt, Y. A. 1972. Cases of foetalization in Hypocrinus schneideri. Paleontol. Zh. 1972:142144.Google Scholar
Bell, B. M. 1975. Ontogeny and systematics of Timeischytes casteri, n. sp.: an enigmatic Devonian edrioasteroid. Bull. Am. Paleontol. 67(287):3356.Google Scholar
Bell, B. M. 1976a. A study of North American Edrioasteroidea. N.Y. State Mus. Sci. Service, Mem. 21. 447 pp.Google Scholar
Bell, B. M. 1976b. Phylogenetic implications of ontogenetic development in the class Edrioasteroidea (Echinodermata). J. Paleontol. 50:10011019.Google Scholar
Ehlers, G. M. and Kesling, R. V. 1958. Timeischytes, a new genus of hemicystitid edrioasteroid from the Middle Devonian Four Mile Dam Limestone of Michigan. J. Paleontol. 32:933936.Google Scholar
Fay, R. O. and Graffham, A. A. 1969. Bromide Formation on Tulip Creek and in the Arbuckle Mountain region. Pp. 3741. In: Ham, W. E., ed. Regional Geology of the Arbuckle Mountains, Oklahoma. Okla. Geol. Survey, Guidebook 17.Google Scholar
Gould, S. J. 1975. The child as man's real father. Nat. Hist. 84(5):1822.Google Scholar
Gould, S. J. 1976. The advantages of eating mom. Nat. Hist. 85(10):2431.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. 501 pp. Belknap Press of Harvard University Press; Cambridge, Mass.Google Scholar
Koch, D. L. and Strimple, H. L. 1968. A new Upper Devonian cystoid attached to a discontinuity surface. Iowa Geol. Surv. Rep. Invest. 5. 49 pp.Google Scholar
Longman, M. W. 1976. Depositional history, paleoecology, and diagenesis of the Bromide Formation (Ordovician), Arbuckle Mountains, Oklahoma. 311 pp. Ph.D. Dissertation. Univ. of Texas at Austin.Google Scholar
Raup, D. M. and Stanley, S. M. 1971. Principles of Paleontology. 388 pp. W. H. Freeman and Company; San Francisco, Calif.Google Scholar
Regnéll, G. 1966. Edrioasteroids. Pp. U136U173. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3(1). Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kans.Google Scholar
Sprinkle, J. and Longman, M. W. 1977. Echinoderm faunas and paleoecology of the Bromide Formation (Middle Ordovician) of Oklahoma (abstr.). J. Paleontol. 51(2, pt. 3):26.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of bysally attached bivalve mollusks. J. Paleontol. 46:165212.Google Scholar
Strimple, H. L. and Graffham, A. A. 1955. New Ordovician echinoderms: II. a new species of Cyathocystis. Wash. Acad. Sci. J. 45(11):353355.Google Scholar
Wainwright, S. A. and Koehl, M. A. R. 1976. The nature of flow and the reaction of benthic Cnidaria to it. Pp. 521. In: Mackie, G. O., ed. Coelenterate Ecology and Behavior. Plenum Press; New York.Google Scholar