Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:44:33.427Z Has data issue: false hasContentIssue false

The oyster enigma variations: a hypothesis of microbial calcification

Published online by Cambridge University Press:  08 April 2016

Geerat J. Vermeij*
Affiliation:
Department of Geology, University of California, Davis, California 95616, U.S.A. E-mail: [email protected]

Abstract

Oysters, whose inner shell layer contains chambers, vesicles, and sometimes chalky deposits, often have extraordinarily thick shells of large size, prompting the idea that there is something unusual about the process of shell fPormation in these and similarly structured bivalves with the oyster syndrome. I propose the hypothesis that calcifying microbes, especially sulfate-reducing bacteria growing on organic substrates in fluid-filled shell-wall chambers, are responsible for shell calcification away from the shell-secreting mantle of the host bivalve. Other phenomena, including the formation of cameral deposits in fossil cephalopods, the cementation of molluscs and barnacles to hard substrata, the formation of a calcified intriticalx on the shell's exterior, and cementation of objects by gastropods on the shell for camouflage, may also involve calcifying bacteria. Several lines of inquiry are suggested to test these hypotheses.

Type
Invited Essay
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Araujo, R., Ramos, M. A., and Bedoya, J. 1994. Microtubules in the shell of the invasive bivalve Corbicula fluminea (Müller, 1776) (Bivalvia: Heterodonta). Journal of Molluscan Studies 60:405413.Google Scholar
Barthel, K. W. 1982. Lithophaga obesa (Philippi) reef-building and cementing pelecypod— a survey of its boring. Proceedings of the Fourth International Coral Reef Symposium 2:649659.Google Scholar
Bergmann, M. D., Grotzinger, J. P., and Fischer, W. W. 2013. Biological influences on seafloor carbonate precipitation. Palaios 28:99115.CrossRefGoogle Scholar
Berner, R. A., and Raiswell, R. 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta 47:855862.Google Scholar
Bolton, M. J., and Portell, R. W. 2013. A new species of Striostrea (Bivalvia: Flemingostreidae) from the Upper Pliocene and Lower Pleistocene strata of Florida, USA. Nautilus 127:6577.Google Scholar
Braithwaite, C. J. R., Taylor, J. D., and Glover, E. A. 2000. Marine carbonate cements, biofilms, biomineralization, and skeletogenesis: some bivalves do it all. Journal of Sedimentary Research 70:11291138.Google Scholar
Burchette, T. P., and Riding, R. 1977. Attached vermiform gastropods in Carboniferous marginal marine stromatolites and biostromes. Lethaia 10:1728.CrossRefGoogle Scholar
Canfield, D. E., and Kump, L. R. 2013. Carbon cycle makeover. Science 339:533534.Google Scholar
Carriker, M. R. 1996. Shell and ligament. Pp. 75168inKennedy, V. S., Newell, R. I. E., and Eble, A. F., eds. The Eastern Oyster: Crassostrea virginica. Maryland Sea Grant College, College Park, Md.Google Scholar
Chattopadhyay, D., and Dutta, S. 2013. Prey selection by drilling predators: a case study from Miocene of Putch, India. Palaeo-geography, Palaeoclimatology, Palaeoecology 374:187196.Google Scholar
Checa, A. G. 2000. Remote biomineralization in divaricate ribs of Strigilla and Solecurtus (Tellinoidea: Bivalvia). Journal of Molluscan Research 66:458466.Google Scholar
Checa, A. G., and Harper, E. M. 2010. Spiky bivalves: intra periostracal crystal growth in anomalodesmatans. Biological Bulletin 219:231248.Google Scholar
Chinzei, K. 1982. Morphological and structural adaptations to soft substrates in the Early Jurassic monomyarians Lithiotis and Cochlearites. Lethaia 15:179197.Google Scholar
Chinzei, K. 1986. Shell structure, growth, and functional morphology of an elongate Cretaceous oyster. Palaeontology 29:139154.Google Scholar
Chinzei, K. 1995. Adaptive significance of the lightweight shell structure in soft bottom oysters. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 195:217227.Google Scholar
Chinzei, K. 2013. Adaptation of oysters to life on soft substrates. Historical Biology 25:223231.Google Scholar
Chinzei, K. and Seilacher, A. 1993. Remote biomineralization I: fill skeletons in vesicular oyster shells. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 190:349361.Google Scholar
Cobban, W. A., Skelton, P. W., and Kennedy, W. J. 1991. Occurrence of the rudistid Durania cornupastoris (Des Moulins 1826) in the Upper Cretaceous Greenhorn Limestone in Colorado. U.S. Geological Survey Bulletin for 1985:D1D8.Google Scholar
Cowen, R. 1966. The distribution of punctae on the brachiopod shell. Geological Magazine 103:269275.Google Scholar
Cowen, R. 1970. Analogies between the Recent bivalve Tridacna and the fossil brachiopods Lyttoniacea and Richthofeniacea. Palaeogeography, Palaeoclimatology, Palaeoecology 8:329344.Google Scholar
Cowen, R. 1983. Symbiosis and its recognition in the fossil record. Pp. 431478inTevesz, M. J. S. and McCall, P. L.eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
D'Attilio, A., and Radwin, G. E. 1971. The intriticalx, an undescribed shell layer in mollusks. Veliger 13:344347.Google Scholar
El-Nakhal, H., and Bandel, K. 1991. Geographical distribution of the small gastropod genus Scaliola. Micropaleontology 37:423424.Google Scholar
Feinstein, N., and Cairns, S. D. 1998. Learning from the collector: a survey of azooxanthellate corals affixed by Xenophora (Gastropoda: Xenophoridae), with an analysis and discussion of attachment patterns. Nautilus 112:7383.Google Scholar
Fenerci-Masse, M., Masse, J.-P., Arias, C., and Vilas, L. 2006. Archaeoradiolitis, a new genus from the Upper Aptian of the Mediterranean region and the origin of the rudist family Radiolitidae. Palaeontology 49:769794.Google Scholar
Fernandez, C. Z., Vendrasco, M. J., and Runnegar, B. 2007. Aesthete canal morphology in twelve species of chiton (Polyplacophora). Veliger 49:5169.Google Scholar
Fischer, A. G., and Teichert, C. 1969. Cameral deposits in cephalopod shells. University of Kansas Paleontological Contributions, Paper 37:130.Google Scholar
Frýda, J. 1998. Some new and better recognized Devonian gastropods from the Prague Basin (Bohemia). Bulletin of the Czech Geological Survey 73:4149.Google Scholar
Gallagher, K. L., Kading, T. J., Braissant, O., Dupraz, C., and Visscher, P. T. 2012. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 10:518530.Google Scholar
Gili, E., Masse, J.-P., and Skelton, P. W. 1995. Rudists as gregarious sediment-dwellers, not reef-builders, on Cretaceous carbonate platforms. Palaeogeography, Palaeoclimatology, Palaeoecology 118:245267.Google Scholar
Glover, E. A., and Taylor, J. D. 2010. Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae). Journal of Molluscan Studies 76:157179.Google Scholar
Halevy, I., Peters, S. E., and Fischer, W. W. 2012. Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337:331334.Google Scholar
Harper, E. M. 1991. The role of predation in the evolution of cementation in bivalves. Palaeontology 34:455460.Google Scholar
Harper, E. M. 1997. Attachment of mature oysters (Saccostrea cucullata) to natural substrata. Marine Biology 127:449453.Google Scholar
Harry, H. W. 1985. Synthesis of the supraspecific classification of living oysters (Bivalvia: Gryphaeidae and Ostreidae). Veliger 28:121158.Google Scholar
Hautmann, M. 2001. Taxonomy and phylogeny of cementing Triassic bivalves (families Prospondylidae, Plicatulidae, Dimyidae and Ostreidae). Journal of Paleontology 44:339373.Google Scholar
Hayami, I., and Kase, T. 1992. A new cryptic species of Pycnodonte from Ryukyu Islands: a living fossil oyster. Proceedings of the Palaeontological Society of Japan, new series 165:10701089.Google Scholar
Hayasaka, S. 1960. Large-sized oysters from the Japanese Pleistocene and their paleoecological implications. Science Reports, Tohoku University, Sendai, second series (Geology), Special Volume 4:356370.Google Scholar
Hesz, M., Beck, F., Gensler, H., Kana, Y., Kiel, S., and Haszprunar, G. 2008. Microanatomy, shell structure and molecular phylogeny of Leptogyra, Xyleptogyra and Leptogyropsis (Gastropoda: Neomphalida: Melanodrymiidae) from sunken wood. Journal of Molluscan Studies 74:383401.Google Scholar
Howe, M. V. 1937. Large oysters from the Gulf Coast Tertiary. Journal of Paleontology 11:155166.Google Scholar
Isaji, S. 1995. Defensive strategy against shell dissolution in bivalves inhabiting acidic environments: the case of Geloina (Corbiculidae) in mangrove swamps. Veliger 38:235246.Google Scholar
Jackson, D. J., Thiel, V., and Wörheide, G. 2010. An evolutionary fast-track to biocalcification. Geobiology 8:191196.Google Scholar
Kahle, C. G. J. 2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria, nannobacteria (?), and biofilms. Carbonates and Evaporites 22:1022.Google Scholar
Kelly, S. R. A., Blanc, E., Price, S. P., and Whitham, A. G. 2000. Early Cretaceous giant bivalves from seep-related limestone mounds, Wollaston Foreland, northeast Greenland. InHarper, E. M., Taylor, J. D., and Crame, E. A., eds. The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177:227246.Google Scholar
Kennedy, W. J., Morris, N. J., and Taylor, J. D. 1970. The shell structure, mineralogy and relationships of the Chamacea (Bivalvia). Palaeontology 13:379413.Google Scholar
Kiel, S. 2004. Shell structures of selected gastropods from hydrothermal vents and seeps. Malacologia 46:169183.Google Scholar
Kilburn, R. N. 1985. The family Epitoniidae (Mollusca: Gastropoda) in Africa and Mozambique. Annals of the Natal Museum 27:239337.Google Scholar
Kirby, M. X. 2000. Paleoecological differences between Tertiary and Quaternary Crassostrea oysters as revealed by stable isotope sclerochronology. Palaios 15:132141.Google Scholar
Kirby, M. X. 2001. Differences in growth rate and environment between Tertiary and Quaternary Crassostrea oysters. Paleobiology 27:84103.Google Scholar
Kirby, M. X., and Jackson, J. B. C. 2004. Extinction of a fast-growing oyster and changing ocean circulation in Pliocene tropical America. Geology 32:10251028.Google Scholar
Kirby, M. X., Sonias, T. M., and Spero, H. J. 1998. Stable isotope sclerochronology of Pleistocene and Recent oyster shells. Palaios 13:560569.Google Scholar
Knoll, A. H., Fairchild, I. J., and Swett, K. 1993. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic-Cambrian transition. Palaios 8:512525.Google Scholar
Kump, L. R., Bralower, T. J., and Ridgwell, A. 2009. Ocean acidification in deep time. Oceanography 22:94107.Google Scholar
Laviano, A., and Skelton, P. W. 1992. Favus antei, a new genus and species of a bizarre “big cell” radiolitid from the Upper Cretaceous of eastern Tethys. Geologica Romana 28:6177.Google Scholar
Lawrence, D. R. 1995. Diagnosis of the genus Crassostrea (Bivalvia, Ostreidae). Malacologia 36:185202.Google Scholar
Linsley, R. M., and Yochelson, E. L. 1973. Devonian carrier shells (Euomphalidae) from North America and Germany. U.S. Geological Survey Professional Paper 824:144.Google Scholar
MacDonald, J., Freer, A., Cusack, M. 2010. Attachment of oysters to natural substrata by biologically induced marine carbonate cement. Marine Biology 157:20872095.Google Scholar
MacGillavry, H. J. 1937. Geology of the province of Camaguey, Cuba with revisional studies in rudist paleontology (mainly based upon collections from Cuba). Physiographisch-Geologis-che Reeks der Geographische en Geologische Mededelingen 14:1168.Google Scholar
Malchus, N. 1990. Revision der Kreide-Austern (Bivalvia: Pteromorphia) Egyptens (Biostratigraphie, Systematik). Berliner Geowissenschaftliche Abhandlungen 125:1231.Google Scholar
Malchus, N. 2010. Shell tubules in Condylocardiinae (Bivalvia: Carditoidea). Journal of Molluscan Studies 76:401403.Google Scholar
Malchus, N., and Aberhan, M. 1998. Transitional gryphaeate/exogyrate oysters (Bivalvia: Gryphaeidae) from the Lower Jurassic of northern Chile. Journal of Paleontology 72:619631.Google Scholar
McConnaughey, T. A. 1994. Calcification, photosynthesis, and global carbon cycles. Bulletin de l'Institut Océanographique de Monaco, numéro spécial 13:137161.Google Scholar
McConnaughey, T. A. 2012. Zooxanthellae that open calcium channels: implications for reef corals. Marine Ecology Progress Series 460:277287.Google Scholar
McConnaughey, T. A., and Whelan, J. F. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews 42:95117.Google Scholar
McLean, J. H. 2012. New species and genera of colloniids from Indo-Pacific coral reefs, with the definition of a new subfamily Liotipomatinae n. subfam. (Turbinoidea, Colloniidae). Zoosystema 34:343376.Google Scholar
Meister, P. 2013. Two opposing effects of sulfide reduction on carbonate precipitation in normal marine, hypersaline, and alkaline environments. Geology 41:499502.Google Scholar
Morris, P. A., and Soule, D. F. 2004. The potential role of microbial activity and mineralization in exoskeletal development in Microporellidae. Pp. 181186inMoyano, H. I., Cancino, J. M., and Wyse Jackson, P. N., eds. Bryozoan studies. A. A. Balkema, Leiden.Google Scholar
Morton, B. 1982. The functional morphology of Bathyarca pectunculoides (Bivalvia: Arcacea) from a deep Norwegian fjord with a discussion of the mantle margin in the Arcoida. Sarsia 67:269282.Google Scholar
Nelson, C. S., Burns, D. A., and Rodgers, K. A. 1983. The taxonomic status, and isotopic evidence for paleoenvironments, of giant oysters of the Oligocene from the Te Kuiti Group, South Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 26:289299.Google Scholar
Newman, W. A. 1987. Evolution of cirripedes and their major groups. Pp. 342inSouthward, A. J., ed. Barnacle biology. A. A. Balkema, Rotterdam.Google Scholar
Newton, R. B., and Smith, E. A. 1912. On the survival of a Miocene oyster in Recent seas. Records of the Geological Survey of India 42:115.Google Scholar
Owada, M. 2007. Functional morphology and phylogeny of the rock-boring bivalves Leiosolenus and Lithophaga (Bivalvia: Mytilidae): a third functional clade. Marine Biology 150:853860.Google Scholar
Paerl, H. W., Steppe, T. F., and Reid, R. P. 2001. Bacterially mediated precipitation in marine stromatolites. Environmental Microbiology 3:123130.Google Scholar
Parras, A., and Casadío, S. 2006. The oyster Crassostrea? hatcheri (Ortmann, 1897), a physical ecosystem engineer from the Upper Oligocene–Lower Miocene of Patagonia, southern Argentina. Palaios 21:168186.Google Scholar
Peck, L. S. 1992. Body volumes and internal space constraints in articulate brachiopods. Lethaia 25:383390.Google Scholar
Peck, L. S., Morris, D. J. and Clarke, A. 1986. The caeca of punctate brachiopods: a respiring tissue not a respiratory organ. Lethaia 19:132.Google Scholar
Peckmann, J., and Goedert, J. L. 2005. Geobiology of ancient and modern methane-seeps. Palaeogeography, Palaeoecology, Palaeoclimatology 227:15.Google Scholar
Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L., and Reitner, J. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. International Journal of Earth Sciences 88:6075.CrossRefGoogle Scholar
Pitombo, F. B. 2004. Phylogenetic analysis of the Balanidae (Cirripedia, Balanomorpha). Zoologica Scripta 33:261276.Google Scholar
Pomar, L., and Hallock, P. 2008. Carbonate factories: a conundrum in sedimentary geology. Earth-Science Reviews 87:134169.Google Scholar
Posenato, R., and Masetti, D. 2012. Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 361–362:113.Google Scholar
Riding, R. 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47 (Suppl.)1:179214.Google Scholar
Rudwick, M. J. S., and Cowen, R. 1967. The functional morphology of some aberrant strophomenide brachiopods from the Permian of Sicily. Bollettino de la Società Paleontologica Italiana 6:113176.Google Scholar
Runnegar, B. 1979. Ecology of Eurydesma and the Eurydesma fauna, Permian of eastern Australia. Alcheringa 3:261285.Google Scholar
Salas, C., Marina, P., Checa, A. G., and Rueda, J. L. 2012. The periostracum of Digitaria digitaria (Bivalvia: Astartidae): formation and structure. Journal of Molluscan Studies 78:3443.Google Scholar
Sasaki, T., Okutani, T., and Fujikura, K. 2003. New taxa and new records of patelliform gastropods associated with chemoautotrophic-based communities in Japanese waters. Veliger 46:189210.Google Scholar
Sasaki, T., 2008. A new species of Pyropelta (Gastropoda: Pyropeltidae) from hydrothermal vents in the Okinawa Trough, southwestern Japan. Journal of Molluscan Studies 74:309316.Google Scholar
Savazzi, E. 1996. Adaptations of vermetid and siliquariid gastropods. Palaeontology 39:157177.Google Scholar
Savazzi, E. 2001. A review of symbiosis in the Bivalvia, with special attention to macrosymbiosis. Paleontological Research 5:5573.Google Scholar
Savazzi, E., and Sälgeback, J. 2004. A comparison of morphological adaptations in the cardiid bivalves Cardium and Budmania. Paleontological Research 8:221239.Google Scholar
Schneider, J. A., and Carter, J. G. 2001. Evolution and phylogenetic significance of cardioidean shell microstructure (Mollusca: Bivalvia). Journal of Paleontology 75:607643.Google Scholar
Schrag, D., Higgins, J. A., Macdonald, F. A. and Johnston, D. T. 2013. Authigenic carbonate and the history of the global carbon cycle. Science 339:840843.Google Scholar
Seilacher, A. 1998. Rudists as bivalvian dinosaurs. Pp. 423436inJohnston, P. A. and Haggart, J. W., eds. Bivalves: an eon of evolution—paleobiological studies honoring Norman D. Newell. University of Calgary Press, Calgary.Google Scholar
Seilacher, A. 2005. Secondary soft-bottom dwellers: convergent responses to an evolutionary “mistake.” Pp. 257271inBriggs, D. E. G., ed. Evolving form and function: fossils and development. Peabody Museum of Natural History, Yale University, New Haven, Conn.Google Scholar
Skelton, P. W. 1976. Functional morphology of the Hippuritidae. Lethaia 9:83100.Google Scholar
Skelton, P. W., and Smith, A. B. 2000. A preliminary phylogeny of rudist bivalves: sifting clades from grades. InHarper, E. M., Taylor, J. D., and Crame, J. A., eds. The evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177:97127.Google Scholar
Sohl, N. F., and Kauffman, E. G. 1964. Giant Upper Cretaceous oysters from the Gulf Coast and Caribbean. U.S. Geological Survey Professional Paper 483-H:122.Google Scholar
Stadnitskaia, A., Muyzer, G., Abbas, B., Coolen, M. J. L., Hopmans, E. C., Baas, M., van Weering, T. C. E., Ivanov, M. K., Poludetkina, E. and Sinninghe Damsté, J. S. . 2005. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea muddy volcanoes of the Sorokin Trough, Black Sea. Marine Geology 217:6796.Google Scholar
Stephenson, L. W. 1952. Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. U.S. Geological Survey Professional Paper 242:1226.Google Scholar
Taylor, J. D., Glover, E. A., and Braithwaite, C. J. R. 1999. Bivalves with “concrete overcoats”: Granicorium and Samarangia. Acta Zoologica 80:285300.Google Scholar
Taylor, J. D., Glover, E. A., Peharda, M., Biatti, G., and Ball, A. 2004. Extraordinarily flexible shell sculpture: the structure and formation of calcified periostracal lamellae in Lucina pensylvanica (Bivalvia: Lucinidae). Malacologia 46:277294.Google Scholar
Titschack, J., Zuschin, M., Spötl, C., and Baal, C. 2010. The giant oyster Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats. Coral Reefs 29:10611075.Google Scholar
Uriz, M. J., Agell, G., Blanquer, A., Turon, X., an d Casamayor, E. O. 2012. Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa? Evolution 66:29932999.Google Scholar
Valentich, Scott P., an d Tongcherd, P. 2008. Coral-boring bivalve molluscs of southeastern Thailand, with the description of a new species. Raffles Bulletin of Zoology, Suppl. 18:191216.Google Scholar
Van Bocxlaer, B., and Van Damme, D. 2009. Palaeobiology and evolution of the Late Cenozoic freshwater molluscs of the Turkana Basin: Iridinidae Swainson, 1840 and Etheriidae Deshayes, 1830 (Bivalvia: Etherioidea). Journal of Systematic Palaeontology 7:129161.Google Scholar
Vasconcelos, C., and McKenzie, J. A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research A 67:378390.Google Scholar
Vermeij, G. J. 2013. The evolution of molluscan photosymbioses: a critical appraisal. Biological Journal of the Linnean Society 109:497511.Google Scholar
Vermeij, G. J., and Raven, H. 2009. Southeast Asia as the birthplace of unusual traits: the Melongenidae (Gastropoda) of northwest Borneo. Contributions to Zoology 78:113127.Google Scholar
Vinther, J. 2009. The canal system in sclerites of the Lower Cambrian Sinosachites (Halkieriidae: Sachitida): significance for the molluscan affinities of the sachitids. Palaeontology 52:689712.Google Scholar
Visscher, P. T., and Stolz, J. F. 2005. Microbial mats as bioreactors: populations, processes, and products. Palaeogeography, Palaeo-climatology, Palaeoecology 219:87100.Google Scholar
Visscher, P. T., Reid, R. P., and Bebout, B. M. 2000. Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919922.Google Scholar
Vokes, H. E. 1982. Notes on the fauna of the Chipola Formation- XXV: on the occurrence of the genus Rothpletzia Simonelli (Mollusca: Gastropoda). Tulane University Studies in Geology and Paleontology 17:5154.Google Scholar
Wagner, P. J. 1999. Phylogenetic relationships of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology 88:1152.Google Scholar
Waller, T. R. 1980. Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithsonian Contributions to Zoology 313:158.Google Scholar
Webb, G. E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43:947971.Google Scholar
Wisshak, M., López Correa, M., Gofas, S., Salas, C., Taviani, M., and Jakobsen, J. 2009. Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic. Deep-Sea Research Part 1: Oceanographic Research Papers 56:377407.Google Scholar
Woodring, W. P. 1958. Springvaleia, a Late Miocene Xenophora-like turritellid from Trinidad. Bulletin of American Paleontology 38:163171.Google Scholar
Woodring, W. P. 1976. A massive Oligocene (?) pycnodonteine oyster from Costa Rica. Journal of Paleontology 50:851857.Google Scholar
Wortmann, U. G., and Paytan, A. 2012. Rapid variability of seawater chemistry over the past 130 million years. Science 337:334336.Google Scholar
Wright, D. T., and Oren, A. 2005. Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiology Journal 22:2753.Google Scholar
Yochelson, E. L. 1971. A new Late Devonian gastropod and its bearing on problems of open coiling and septation. Smithsonian Contributions to Paleobiology 3:231241.Google Scholar
Yonge, C. M. 1955. Adaptation to rock boring in Botula and lithophaga (Lamellibranchia, Mytilidae) with a discussion of the evolution of this habit. Quarterly Journal of Microscopical Science 96:383410.Google Scholar
Zeebe, R. E. 2012. History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences 40:141165.Google Scholar
Zhang, G., and 82 others. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:4954.Google Scholar
Zieritz, A., Checa, A. G., Aldridge, D. C., and Harper, E. A. 2011. Variability, function and phylogenetic significance of periostracal microprojections in unionid bivalves (Mollusca). Journal of Zoological Systematics and Evolutionary Research 49:615.Google Scholar
Zuschin, M., and Baal, C. 2007. Large gryphaeid oysters as habitats for numerous sclerobionts: a case study from the northern Red Sea. Facies 53:319327.Google Scholar