Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T23:43:10.975Z Has data issue: false hasContentIssue false

Oxygen isotope variability in juvenile dinosaurs (Hypacrosaurus): evidence for thermoregulation

Published online by Cambridge University Press:  08 February 2016

Reese E. Barrick
Affiliation:
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695
William J. Showers
Affiliation:
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695

Abstract

Small terrestrial vertebrates are not capable of maintaining a constant body temperature (±2°C) without a relatively high metabolism. The amount of temperature variability during bone growth can be determined using oxygen isotopes from bone phosphate because fractionation of oxygen isotopes between body fluid and bone phosphate is dependent upon temperature. Fluctuation of body temperature during the early phase of growth in juvenile ectotherms should result in high intra- and interbone isotopic variability, whereas juvenile endotherms should have low isotopic variability resulting from the maintenance of homeothermy. Analyses of juvenile Hypacrosaurus individuals indicate a pattern of low isotopic heterogeneity suggestive of endothermy.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barrick, R. E. 1993. Thermal physiology of the Dinosauria: a study of oxygen isotopes from bone phosphate. Ph.D. dissertation. University of Southern California.Google Scholar
Bennett, A. F., and Dawson, W. R. 1976. Metabolism. Pp. 127224in Gans, C. and Dawson, W. R. eds. Biology of the Reptilia. Academic Press, New York.Google Scholar
Bligh, J., and Johnson, K. G. 1973. Glossary of terms for thermal physiology. Journal of Applied Physiology 35:941961.CrossRefGoogle ScholarPubMed
Callison, G. 1987. Small problems: biological implications of tiny dinosaurs. Pp. 7079in, Czerkas, S. J. and Olsen, E. C., eds. Dinosaurs past and present, Vol. 1. Symposium of the Natural History Museum of Los Angeles.Google Scholar
Coulson, R. A. 1984. How metabolic rate and anaerobic glycolysis determine the habits of reptiles. Pp. 425441in, Ferguson, M. W. J., ed. The structure, development, and evolution of reptiles. Symposia of the Zoological Society of London, no. 52.Google Scholar
Crowson, R. C., Showers, W. J., Wright, E. K., Hoering, T. C. 1991. A method for preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63:23972400.CrossRefGoogle Scholar
Dunham, A. E., Overall, K. L., Porter, W. P., and Forster, C. A. 1989. Implications of ecological energetics and biophysical and developmental constraints for life-history variation in dinosaurs. Geological Society of America Special Paper 238, 119.CrossRefGoogle Scholar
Francillon-Vieillot, H. V. de Buffienil, Castenet, J., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., and de Ricqlès, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. Pp. 471530in Carter, J. G., ed. Skeletal biomineralization, Vol. I. Van Nostrand Reinhold, New York.Google Scholar
Horner, J. R., and Gorman, J. 1987. Digging dinosaurs. Harper and Row, New York.Google Scholar
Kolodny, Y., Luz, B., and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. Earth and Planetary Science Letters 64:398404.CrossRefGoogle Scholar
Longinelli, A., and Nuti, S. 1973. Revised phosphate-water isotopic temperature scale. Earth Planetary Science Letters 19:373376.CrossRefGoogle Scholar
Luz, B., and Kolodny, Y. 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth and Planetary Science Letters 75:2936.CrossRefGoogle Scholar
Luz, B., and Kolodny, Y. 1989. Oxygen isotope variation in bone phosphate. Applied Geochemistry 4:317324.CrossRefGoogle Scholar
Luz, B., Corrnie, A. B., and Schwarcz, H. P. 1990. Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta 54:17231728.CrossRefGoogle Scholar
McNab, B. K., and Auffenberg, W. 1976. The effect of large body size on the temperature regulation of the Komodo dragon, Varanus komodoensis. Comparative Biochemical Physiology 55:345350.CrossRefGoogle ScholarPubMed
Nagy, K. A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecological Monographs 57:111128.CrossRefGoogle Scholar
Pate, F. D., Hutton, J. T., and Norrish, K. 1989. Ionic exchange between soil solution and bone: toward a predictive model. Applied Geochemistry 4:303316.CrossRefGoogle Scholar
Pflug, K. P., Schuster, K. D., Pichotka, J. P., and Forstel, H. 1979. Fractionation effects of oxygen isotopes in mammal. Pp. 553561in Klein, E. R. and Klein, P. D., eds. Stable isotopes. Proceedings of the Third International Conference, Academic Press, New York.Google Scholar
Schoeller, D. A., Leitch, C. A., and Brown, C. 1986. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation. American Journal of Physiology 251:R11371143.Google ScholarPubMed
Shemesh, A. 1990. Crystallinity and diagenesis of sedimentary apatites. Geochimica et Cosmochimica Acta 54:24332438.CrossRefGoogle Scholar
Spotila, J. R. 1980. Constraints of body size and environment on the temperature regulation of dinosaurs. Pp. 233252in Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warmblooded dinosaurs. American Association for the Advancement of Science Selected Symposium 28. Westview Press, Boulder, Colo.Google Scholar
Spotila, J. R., O'Connor, M. P., Dodson, P., and Paladino, F. V. 1991. Hot and cold running dinosaurs: body size, metabolism and migration. Modern Geology 16:203227.Google Scholar
Varricchio, D. J., and Horner, J. R. 1993. Hadrosaurid and lambeosaurid bone beds from the Upper Cretaceous Two Medicine Formation of Montana: taphonomic and biologic implications. Canadian Journal of Earth Science 30:9971006.CrossRefGoogle Scholar
Wong, W. W., Cochran, W. J., Klish, W. J., O'Brien Smith, E., Lee, L. S., and Klein, P. D. 1988. In vivo isotope-fractionation factors and the measurement of deuterium- and oxygen- 18-dilution spaces from plasma, urine, saliva, respiratory water vapor, and carbon dioxide. American Journal of Clinical Nutrition 47:16.CrossRefGoogle ScholarPubMed