Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T19:11:04.392Z Has data issue: false hasContentIssue false

Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics

Published online by Cambridge University Press:  08 February 2016

Mike Foote*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected]

Abstract

Changes in genus diversity within higher taxa of marine animals on the temporal scale of a few million years are more strongly correlated with changes in extinction rate than with changes in origination rate during the Paleozoic. After the Paleozoic the relative roles of origination and extinction in diversity dynamics are reversed. Metazoa as well as individual higher taxa shift from one mode of diversity dynamics to the other. The magnitude of taxonomic rates, the relative variance of origination and extinction rates, and the presence or absence of a long-term secular increase in diversity all fail to account for the shift in importance of origination and extinction in diversity changes. Origination and extinction rates both tend to be diversity-dependent, but different modes of diversity-dependence may contribute to the change in diversity dynamics from the Paleozoic to the post-Paleozoic. During the Paleozoic, there is a weak tendency for extinction rates to be more diversity-dependent than origination rates, whereas after the Paleozoic the two rates are about equally diversity-dependent on average.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Briggs, D. E. G. 1993. Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:6568.2.3.CO;2>CrossRefGoogle Scholar
Allmon, W. D. 1992. A causal analysis of stages in allopatric speciation. Oxford Surveys in Evolutionary Biology 8:219257.Google Scholar
Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals. Pp. 233287in McKinney, and Drake, 1998.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191243in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372387.CrossRefGoogle Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.CrossRefGoogle Scholar
Bambach, R. K., and Sepkoski, J. J. Jr. 1992. Historical evolutionary information in the traditional Linnean hierarchy. Paleontological Society Special Publication 6:16.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Benton, M. J. 1997. Models for the diversification of life. Trends in Ecology and Evolution 12:490495.CrossRefGoogle ScholarPubMed
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Boucot, A. J. 1999. Introductory concerns. Pp. 1317in Boucot, A. J. and Lawson, J. D., eds. Paleocommunities: a case study from the Silurian and Lower Devonian. Cambridge University Press, Cambridge.Google Scholar
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8(9):18.Google Scholar
Bretsky, P. W. 1973. Evolutionary patterns in the Paleozoic Bivalvia: documentation and some theoretical considerations. Geological Society of America Bulletin 84:20792096.2.0.CO;2>CrossRefGoogle Scholar
Bretsky, P. W., and Lorenz, D. M. 1970. Essay on genetic-adaptive strategies and mass extinctions. Geological Society of America Bulletin 81:24492456.CrossRefGoogle Scholar
Brett, C. E. 1998. Sequence stratigraphy, paleoecology, and evolution: biotic clues and responses to sea-level fluctuation. Palaios 13:241262.CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian basin. Pp. 285315in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Brett, C. E., and Baird, G. C. 1997. Epiboles, outages, and ecological evolutionary bioevents: taphonomic, ecological, and biogeographic factors. Pp. 249284in Brett, C. E. and Baird, G. C., eds. Paleontological events: stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Buzas, M. A., and Culver, S. J. 1994. Species pool and dynamics of marine paleocommunities. Science 246:14391441.CrossRefGoogle Scholar
Buzas, M. A., and Culver, S. J. 1998. Assembly, disassembly, and balance in marine communities. Palaios 13:263275.CrossRefGoogle Scholar
Carr, T. R., and Kitchell, J. A. 1980. Dynamics of taxonomic diversity. Paleobiology 6:427443.CrossRefGoogle Scholar
Cheetham, A. H., and Jackson, J. B. C. 1996. Speciation, extinction, and the decline of arborescent growth in Neogene and Quaternary cheilostome Bryozoa of tropical America. Pp. 205233in Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Copper, P. 1994. Reefs under stress: the fossil record. Courier Forschungsinstitut Senckenberg 172:8794.Google Scholar
Crame, J. A. 1997. An evolutionary framework for the polar regions. Journal of Biogeography 24:19.CrossRefGoogle Scholar
Eble, G. J. 1999. Originations: land and sea compared. Geobios 32:223234.CrossRefGoogle Scholar
Erwin, D. H. 1996. Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. Pp. 398418in Jablonski, et al. 1996.Google Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.CrossRefGoogle ScholarPubMed
Flessa, K. W., and Jablonski, D. 1996. The geography of evolutionary turnover: a global analysis of extant bivalves. Pp. 376397in Jablonski, et al. 1996.Google Scholar
Foote, . 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.CrossRefGoogle Scholar
Foote, . 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.CrossRefGoogle Scholar
Foote, . 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs No. 1. Paleobiology 25(Suppl. to No. 2).CrossRefGoogle Scholar
Foote, . 2000. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology‘s perspective. Paleobiology 26(Suppl. to No. 4):74102.CrossRefGoogle Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.CrossRefGoogle ScholarPubMed
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology 20:445458.CrossRefGoogle Scholar
Gilinsky, N. L. 1998. Evolutionary turnover and volatility in higher taxa. Pp. 162184in McKinney, and Drake, 1998.Google Scholar
Gilinsky, N. L., and Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427445.CrossRefGoogle Scholar
Hallam, A. 1991. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology 5:257262.CrossRefGoogle Scholar
Hallam, A. 1994. An outline of Phanerozoic biogeography. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Harper, C. W. Jr. 1996. Patterns of diversity, extinction, and origination in the Ordovician-Devonian Stropheodontacea. Historical Biology 11:267288.CrossRefGoogle Scholar
Harvey, P. H., and Rambaut, A. 1998. Phylogenetic extinction rates and comparative methodology. Proceedings of the Royal Society of London B 265:16911696.CrossRefGoogle Scholar
Hey, J. 1992. Using phylogenetic trees to study speciation and extinction. Evolution 46:627640.CrossRefGoogle ScholarPubMed
Hey, J., Hilton, H., Leahy, N., and Wang, R.-L. 1998. Testing models of speciation and extinction with phylogenetic trees of extant taxa. Pp. 7090in McKinney, and Drake, 1998.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 1999. Models for simulating the fossil record. Geology 27:491494.2.3.CO;2>CrossRefGoogle Scholar
Jablonski, D. 1991. Extinctions: a paleontological perspective. Science 253:754757.CrossRefGoogle ScholarPubMed
Jablonski, D. 1993. The tropics as a source of novelty through geological time. Nature 362:142144.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1990a. The ecology of evolutionary innovation: the fossil record. Pp. 253288in Nitecki, M. H., ed. Evolutionary innovations. University of Chicago Press, Chicago.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990b. The origin and diversification of major groups: environmental patterns and macroevolutionary lags. Pp. 1757in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar
Jablonski, D., and Bottjer, D. J. 1991. Environmental patterns in the origins of higher taxa: the post-Paleozoic fossil record. Science 252:18311833.CrossRefGoogle ScholarPubMed
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.CrossRefGoogle ScholarPubMed
Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. 1996. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
James, N. P. 1981. Introduction to carbonate facies models. Pp. 209211in Walker, R. G., ed. Facies models, 2d ed.Geological Association of Canada, Toronto.Google Scholar
James, N. P. 1997. The cool-water carbonate depositional realm. Pp. 120in James, and Clarke, 1997.Google Scholar
James, N. P., and Clarke, J. A. D., eds. 1997. Cool-water carbonates. SEPM (Society for Sedimentary Geology) Special Publication No. 56.CrossRefGoogle Scholar
Kendall, D. G. 1948. On the generalized “birth-and-death” process. Annals of Mathematical Statistics 19:115.CrossRefGoogle Scholar
Kirchner, J. W., and Weil, A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177180.CrossRefGoogle ScholarPubMed
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Mark, G. A., and Flessa, K. W. 1977. A test for evolutionary equilibria: Phanerozoic brachiopods and Cenozoic mammals. Paleobiology 3:1722.CrossRefGoogle Scholar
McKinney, M. L., and Drake, J. A., eds. 1998. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Miller, A. I. 1997a. Dissecting global diversity patterns: examples from the Ordovician Radiation. Annual Review of Ecology and Systematics 28:85104.CrossRefGoogle ScholarPubMed
Miller, A. I. 1997b. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology 23:410419.CrossRefGoogle Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.CrossRefGoogle ScholarPubMed
Miller, A. I., and Mao, S. G. 1995. Association of orogenic activity with the Ordovician Radiation of marine life. Geology 23:305308.2.3.CO;2>CrossRefGoogle ScholarPubMed
Miller, A. I. 1998. Scales of diversification and the Ordovician Radiation. Pp. 288310in McKinney, and Drake, 1998.Google Scholar
Miller, A. I., and Sepkoski, J. J. Jr. 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.CrossRefGoogle ScholarPubMed
Nee, S., Holmes, E. C., May, R. M., and Harvey, P. H. 1995. Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London B 344:7782.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. Geological Society of America Special Paper 89:6391.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.CrossRefGoogle Scholar
Pease, C. M. 1985. Biases in the durations and diversities of fossil taxa. Paleobiology 11:272292.CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 117:10651071.CrossRefGoogle Scholar
Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.CrossRefGoogle Scholar
Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M. 1983. On the early origins of major biologic groups. Paleobiology 9:107115.CrossRefGoogle Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.CrossRefGoogle Scholar
Raup, D. M. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.CrossRefGoogle ScholarPubMed
Raup, D. M. 1992. Large-body impact and extinction in the Phanerozoic. Paleobiology 18:8088.CrossRefGoogle ScholarPubMed
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.CrossRefGoogle ScholarPubMed
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.CrossRefGoogle Scholar
Raymond, A., and Metz, C. 1995. Laurussian land-plant diversity during the Silurian and Devonian: mass extinction, sampling bias, or both? Paleobiology 21:7491.CrossRefGoogle Scholar
Ronov, A. B. 1994. Phanerozoic transgressions and regressions on the continents: a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science 294:777801.CrossRefGoogle Scholar
Rosenzweig, M. L. 1992. Species diversity gradients: we know more and less than we thought. Journal of Mammalogy 73:715730.CrossRefGoogle Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.CrossRefGoogle ScholarPubMed
Rutherford, S., D'Hondt, S., and Prell, W. 1999. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400:749753.CrossRefGoogle Scholar
Scotese, C. R., and McKerrow, W. S. 1990. Revised World maps and introduction. Pp. 121in McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography. Geological Society Memoir 12. Geological Society of London.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Paleozoic. Science 235:6466.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1990. The taxonomic structure of periodic extinction. Geological Society of America Special Paper 247:3344.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1991. Population biology models in macroevolution. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:136156. Paleontological Society, Knoxville, Tenn.Google Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2d ed. Milwaukee Public Museum Contributions in Biology and Geology 83:1156.Google Scholar
Sepkoski, J. J. Jr. 1993. Phanerozoic diversity at the genus level: problems and prospects. Geological Society of America Abstracts with Programs 25:A50.Google Scholar
Sepkoski, J. J. Jr. 1996a. Competition in macroevolution: the double wedge revisited. Pp. 211255in Jablonski, et al. 1996.Google Scholar
Sepkoski, J. J. Jr. 1996b. Patterns of Phanerozoic extinction: a perspective from global databases. Pp. 3552in Walliser, O. H., ed. Global events and event stratigraphy. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1997. Biodiversity: past, present, and future. Journal of Paleontology 71:533539.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.CrossRefGoogle Scholar
Siegel, S., and Castellan, N. J. Jr. 1988. Nonparametric statistics for the behavioral sciences, 2d ed. McGraw-Hill, New York.Google Scholar
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution, pattern and process. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1984. Temperature and biotic crises in the marine realm. Geology 12:205208.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. 1985. Rates of evolution. Paleobiology 11:1326.CrossRefGoogle Scholar
Stanley, S. M. 1988a. Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. American Journal of Science 288:334352.CrossRefGoogle Scholar
Stanley, S. M. 1988b. Climatic cooling and mass extinction of Paleozoic reef communities. Palaios 3:228232.CrossRefGoogle Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and extinction: fortuitous causal linkages. Pp. 103127in Ross, R. M. and Allmon, W. D., eds. Causes of evolution. University of Chicago Press, Chicago.Google Scholar
Stanley, S. M. 1999. The myth of the diversity plateau: high extinction rates, not ecological saturation, stifled the diversification of Paleozoic marine life. Geological Society of America Abstracts with Programs 31:A337.Google Scholar
Stehli, F. G., and Wells, J. W. 1971. Diversity and age gradients in hermatypic corals. Systematic Zoology 20:115126.CrossRefGoogle Scholar
Taylor, P. D., and Allison, P. A. 1998. Bryozoan carbonates through time and space. Geology 26:459462.2.3.CO;2>CrossRefGoogle Scholar
Tucker, R. D., and McKerrow, W. S. 1995. Early Paleozoic chronology: a review in light of new U-Pb zircon ages from Newfoundland and Britain. Canadian Journal of Earth Sciences 32:368379.CrossRefGoogle Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Van Valen, L. 1969. Climate and evolutionary rate. Science 166:16561658.CrossRefGoogle ScholarPubMed
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Van Valen, L. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.CrossRefGoogle Scholar
Van Valen, L. 1985a. How constant is extinction? Evolutionary Theory 7:93106.Google Scholar
Van Valen, L. 1985b. A theory of origination and extinction. Evolutionary Theory 7:133142.Google Scholar
Van Valen, L. 1994. Concepts and the nature of selection by extinction: is generalization possible? Pp. 200216in Glen, W., ed. The mass extinction debates: how science works in a crisis. Stanford University Press, Stanford, Calif.CrossRefGoogle Scholar
Van Valen, L., and Boyajian, G. E. 1987. Comment and reply on “Phanerozoic trends in background extinction: consequence of an aging fauna.” Geology 15:875876.2.0.CO;2>CrossRefGoogle Scholar
Van Valen, L., and Maiorana, V. C. 1985. Patterns of origination. Evolutionary Theory 7:107125.Google Scholar
Walker, T. D., and Valentine, J. W. 1984. Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist 124:887899.CrossRefGoogle Scholar
Webb, S. D. 1969. Extinction-origination equilibria in late Cenozoic land mammals of North America. Evolution 23:688702.CrossRefGoogle ScholarPubMed
Wilkinson, B. H. 1979. Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology 7:524527.2.0.CO;2>CrossRefGoogle Scholar
Wilson, J. L. 1975. Carbonate facies in geologic history. Springer, New York.CrossRefGoogle Scholar
Ziegler, A. M., Hulver, M. L., Lottes, A. L., and Schmachtenberg, W. F. 1984. Uniformitarianism and paleoclimates: inferences from the distribution of carbonate rocks. Pp. 325in Brenchley, P., ed. Fossils and climate. Wiley, New York.Google Scholar