Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T07:18:33.441Z Has data issue: false hasContentIssue false

One-way traffic in the western Atlantic: causes and consequences of Miocene to early Pleistocene molluscan invasions in Florida and the Caribbean

Published online by Cambridge University Press:  08 April 2016

Geerat J. Vermeij*
Affiliation:
Department of Geology, University of California at Davis, One Shields Avenue, Davis, California 95616. E-mail: [email protected]

Abstract

Understanding the patterns, causes, and consequences of biotic interchange—the movement of species between neighboring biotas—is crucial for evaluating the effects of human-introduced species in the modern biosphere. Since at least the early Miocene, the tropical and subtropical western Atlantic has comprised two biogeographic provinces, the Gatunian (including the Caribbean) and the Caloosahatchian (North Carolina to Florida and the Yucatán peninsula). Although these adjacent provinces are not separated by a land barrier, exchange of species between them has been limited and intermittent. A synthesis of taxonomic, phylogenetic, stratigraphic, and biogeographic data on six gastropod and two bivalve groups reveals a dramatic shift in the pattern of interchange between these provinces. About 31% of early Miocene Caloosahatchian subgenus- and species-group-level taxa invaded the Gatunian Province by the late Miocene, but no taxa extended their ranges in the opposite direction. Beginning in the early Pliocene and continuing into the early Pleistocene, 40 taxa (roughly one-third of Gatunian diversity) invaded the Caloosahatchian Province from the Caribbean, whereas only four taxa extended their range from Florida into the Caribbean.

Comparisons between the ranked percentage of Gatunian invaders in Florida and the magnitude of regional extinction there for each of four middle Pliocene to early Pleistocene intervals reveal no consistent relation between invasion and prior or concurrent extinction. During the Pliocene, invaders not only compensated for extinctions, but also accounted for almost all the observed increase in standing diversity in Florida. Only after the large extinction event at the end of the Pliocene did invaders from the Gatunian Province not fully compensate for the loss of species.

Although the Miocene interaction between the Gatunian and Caloosahatchian biotas involved two fully tropical entities, the Plio–Pleistocene interaction exemplifies a general pattern in which tropical species often spread to higher latitudes during warm intervals, but warm-temperate or subtropical species rarely become established in the Tropics. Some evidence indicates that tropical Caribbean molluscs are exposed and adapted to more intense competition and predation than their subtropical counterparts in Florida, implying a role for individual-level biotic interactions in determining the predominant direction of interchange. Intensification of north-flowing currents in the western Atlantic may also contribute to the nearly one-way movement of taxa from the Caribbean to Florida during the Pliocene and early Pleistocene. The changing pattern of interchange from the Miocene to the Pliocene further reflects a change in the geography of species richness, with the richer province serving as the chief donor and the province with lower diversity acting as the main recipient of invaders. Diversity, ocean circulation, and the competitive environment thus account for the observed switch in the predominant direction of invasion in the western Atlantic during the Neogene.

The fact that almost 90% of Gatunian immigrants to Florida differentiated taxonomically there indicates that invasion is intermittent. Long-term consequences of this and many other cases of interchange between provinces include enrichment of the regional and global species pool and the spread of adaptations reflecting intense competition and predation.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akers, W. H. 1972. Planktonic Foraminifera and biostratigraphy of some Neogene formations, northern Florida and Atlantic coastal plain. Tulane Studies in Geology and Paleontology 9:1139.Google Scholar
Alexander, R. R., and Dietl, G. P. 2001. Latitudinal trends in naticid predation on Anadara ovalis (Bruguière, 1789) and Divalinga quadrisulcata (Orbigny, 1842) from New Jersey to the Florida Keys. American Malacological Bulletin 16:179194.Google Scholar
Amano, K. 2004. Biogeography of the Pleistocene extinction of neogastropods in the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 202:245252.Google Scholar
Amano, K., Masuda, M., and Sato, T. 2000. Warm-water influx into Japan Sea in the middle Pliocene—molluscan fauna of the Tentokudi Formation around Mt. Taihei in Akita Prefecture. Journal of the Geological Society of Japan 106:299306.Google Scholar
Anderson, L. C. 1996. Neogene paleontology in the northern Dominican Republic 16. The family Corbulidae (Mollusca: Bivalvia). Bulletins of American Paleontology 110:534.Google Scholar
Anderson, L. C. 2001. Temporal and geographic size trends in Neogene Corbulidae (Bivalvia) of tropical America: using environmental sensitivity to decipher causes of morphologic trends. Palaeogeography, Palaeoclimatology, Palaeoecology 166:101120.Google Scholar
Anderson, L. C., and Roopnarine, P. D. 2003. Evolution and phylogenetic relationships of Neogene Corbulidae (Bivalvia; Myoidea) of tropical America. Journal of Paleontology 77:10871102.Google Scholar
Bakker, R. T. 1980. Dinosaur heresy—dinosaur renaissance: why we need endothermic archosaurs for a comprehensive theory of bioenergetic evolution. Pp. 351462 in Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs. Westview, Boulder, Colo. Google Scholar
Bender, M. L. 1973. Helium-uranium dating of corals. Geochimica et Cosmochimica Acta 37:12291247.CrossRefGoogle Scholar
Beu, A. G. 2001. Gradual Miocene to Pleistocene uplift of the Central American isthmus: evidence from tropical American tonnoidean gastropods. Journal of Paleontology 75:706720.Google Scholar
Beu, A. G. 2004. Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand Part 1: revised generic positions and recognition of warm-water and cool-water migrants. With an appendix: Age and correlation of Ototoka Tephra, B. V. Alloway, B. J. Pillans, J. R. Naish, and J. A. West-gate. Journal of the Royal Society of New Zealand 34:111265.Google Scholar
Brébion, P. 1979. Étude biostratigraphique et paléontologique du Quaternaire marocain. Annales de Paléontologie Invertébrés 65:142.Google Scholar
Briggs, J. C. 1966. Zoogeography and evolution. Evolution 20:282289.Google Scholar
Briggs, J. C. 1967a. Dispersal of tropical marine shore animals: Coriolis parameters or competition? Nature 216:350.Google Scholar
Briggs, J. C. 1967b. Relationship of the tropical shelf regions. Studies in Tropical Oceanography 5:569578.Google Scholar
Brigham-Grette, J., and Carter, L. D. 1992. Pliocene marine transgressions of northern Alaska: circum-Arctic correlations and paleoclimatic interpretations. Arctic 45:7489.CrossRefGoogle Scholar
Brown, J. H. 1989. Patterns, modes and extent of invasions by vertebrates. Pp. 85109 in Drake, J. A., Mooney, H. A., di Castri, F., Groves, R. H., Kruger, F. J., Rejmánek, M., and Williamson, M., eds. Biological invasions: a global perspective. John Wiley, Chichester, UK.Google Scholar
Bybell, L. M. 1999. Neogene calcareous nannofossil biostratigraphy of the Caribbean coast of Panama and Costa Rica. Bulletins of American Paleontology 357:4159.Google Scholar
Campbell, L. D. 1993. Pliocene molluscs from the Yorktown and Chowan River Formations in Virginia. Virginia Division of Mineral Resources Publication 12:1259.Google Scholar
Coates, A. G. 1999. A lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica, to Colon, Panama. Bulletins of American Paleontology 357:1740.Google Scholar
Coates, A. G., and Obando, J. A. 1996. The geologic evolution of the Central American isthmus. Pp. 2156 in Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104:814828.Google Scholar
Coates, A. G., Aubry, M.-P., Berggren, W. A., Collins, L. S., and Kunk, M. 2003. Early Neogene history of the Central American arc from Bocas del Toro, western Panama. Geological Society of America Bulletin 115:271287.Google Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996a. Earliest evolution associated with closure of the tropical American seaway. Proceedings of the National Academy of Sciences USA 93:60696072.Google Scholar
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M.-P., and Zhang, J. 1996b. The late Miocene Panama isthmian strait. Geology 24:687690.Google Scholar
Cotton, M. A. 1999. Neogene planktonic foraminiferal biochronology of the southern Central American isthmus. Bulletins of American Paleontology 357:6180.Google Scholar
Cronin, T. M. 1988. Evolution of marine climates of the U.S. Atlantic coast during the past four million years. Philosophical Transactions of the Royal Society of London B 318:661678.Google Scholar
Cronin, T. M. 1990. Evolution of Neogene and Quaternary marine Ostracoda, United States Atlantic Coastal Plain: evolution and speciation in Ostracoda, IV. U.S. Geological Survey Professional Paper 1367-C:143.Google Scholar
Cronin, T. M., and Dowsett, H. J. 1996. Biotic and oceanographic response to the Pliocene closing of the Central American isthmus. Pp. 76104 in Jackson, J. B. C., Budd, A. F., and Coates, A. G., eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Darwin, C. 1859. The origin of species by natural selection or the preservation of favoured races in the struggle for life. John Murray, London.Google Scholar
deMaintenon, M. J. 1999. Phylogenetic analysis of the Columbellidae (Mollusca: Neogastropoda) and the evolution of herbivory from carnivory. Invertebrate Biology 118:258288.Google Scholar
DeVries, T. J., and Wells, L. E. 1990. Thermally-anomalous Holocene molluscan assemblages from coastal Peru: evidence for paleogeographic, not climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology 81:1332.Google Scholar
Dietl, G. P., Herbert, G. S., and Vermeij, G. J. 2004. Reduced competition and altered feeding behavior among marine snails after a mass extinction. Science 306:22292231.Google Scholar
Dowsett, H. J., Cronin, T. M., Poore, R. Z., Thompson, R. S., Whatley, R. C., and Wood, A. M. 1992. Micropaleontological evidence for increased regional heat transport in the North Atlantic Ocean during the Pliocene. Science 258:11331135.Google Scholar
Droxler, A. W., Burke, K. C., Cunningham, A. D., Hine, A. C., Rosencrantz, E., Duncan, D. S., Hallock, P., and Robinson, E. 1998. Caribbean constraints on circulation between Atlantic and Pacific Oceans over the past 40 million years. Pp. 169191 in Crowley, T. J. and Burke, K. C., eds. Tectonic boundary conditions for climate reconstructions. Oxford University Press, New York.CrossRefGoogle Scholar
Duque-Caro, H. 1990. Neogene stratigraphy, paleoceanography and the paleobiogeography in northwest South America and the evolution of the Panama seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77:203234.Google Scholar
Fortunato, H. 1998. Reconciling observed patterns of temporal occurrence with cladistic hypotheses of phylogenetic relationships. American Malacological Bulletin 14:191200.Google Scholar
Gibson-Smith, J., and Gibson-Smith, W. 1988. Further notes on Eudolium (Galeodolium) subfasciatum . Tulane Studies in Geology and Paleontology 21:119.Google Scholar
González de Juana, C., Iturralde de Arozena, J. M., and Picard Cadillat, J. 1980. Geología de Venezuela y de sus cuencas petrolíferas, Tomo 2. Ediciones Foninves, Caracas.Google Scholar
Haug, G. H., Sigman, D. M., Tiedemann, R., Petersen, T. F., and Sarnthein, M. 1999. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401:769782.Google Scholar
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C. 2001. Role of Panama uplift on oceanic freshwater balance. Geology 29:207210.Google Scholar
Herbert, G. S. In press a. A taxonomic and systematic revision of the genus systematic revision of the genus systematic revision of the genus Eupleura H. and A. Adams, 1854 (Gastropoda: Muricidae) in the tropical eastern Pacific and Caribbean. Veliger.Google Scholar
Herbert, G. S. In press b. Phylogenetic systematics of Murex tampaensis Conrad, 1946 (Gastropoda: Muricidae), with a taxonomic revision of the Eupleura miocenica species. Journal of Molluscan Studies, in press.Google Scholar
Houart, R. 1999. Review of the Indo-West Pacific species of Haustellum Schumacher, 1817 and comments on Vokesimurex Petuch, 1994 (Gastropoda: Muricidae) with the description of H. bondarevi n.sp. Apex 14:81107.Google Scholar
Houart, R. 2002. Description of a new typhine (Gastropoda: Muricidae) from New Caledonia with comments on some generic classifications within the subfamily. Venus 61:147159.Google Scholar
Iturralde-Vinent, M. 2003. A brief account of the evolution of the Caribbean seaway: Jurassic to present. Pp. 386396 in Prothero, D. R., Ivany, L. C., and Nesbitt, E. A., eds. From greenhouse to icehouse: the marine Eocene-Oligocene transition. Columbia University Press, New York.Google Scholar
Jacobs, D. K., Haney, T. A., and Louie, K. D. 2004. Genes, diversity, and geologic process on the Pacific coast. Annual Reviews of Earth and Planetary Sciences 32:601652.Google Scholar
Jones, D. S., MacFadden, B. J., Webb, S. D., Mueller, P. A., Hodell, D. A., and Cronin, T. M. 1991. Integrated geochronology of a classic Pliocene fossil site in Florida: linking marine and terrestrial biochronologies. Journal of Geology 99:637648.Google Scholar
Jung, P. 1969. Miocene and Pliocene mollusks from Trinidad. Bulletins of American Paleontology 55:193657.Google Scholar
Jung, P. 1977. Two rare gastropod genera from the Pliocene of Venezuela. Eclogae Geologica Helvetica 70:845854.Google Scholar
Jung, P. 1989. Review of the Strombina-group (Gastropoda: Columbellidae), fossil and living: distribution, biogeography, and systematics. Schweizerische Paläontologische Abhandlungen 111:1298.Google Scholar
Jung, P. 1994. Neogene paleontology in the northern Dominican Republic 15. The genera Columbella, Eurypyrene, Parametaria, Conella, Nitidella, and Metulella (Gastropoda: Columbellidae). Bulletins of American Paleontology 106:145.Google Scholar
Jung, P., and Petit, R. E. 1990. Neogene paleontology in the northern Dominican Republic 10. The family Cancellariidae (Mollusca: Gastropoda). Bulletins of American Paleontology 98:87144.Google Scholar
Kafanov, A. I., and Volvenko, I. V. 1997. Bivalve molluscs and Cenozoic paleoclimatic events in the northwestern Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 129:119153.Google Scholar
Keller, G., Zenker, C. E., and Stone, S. M. 1989. Neogene history of the Pacific-Caribbean gateway. South American Journal of Earth Sciences 2:73108.Google Scholar
Kensley, B., and Pether, J. 1986. Late Tertiary and early Quaternary fossil Mollusca of the Hondeklip area, Cape Province, South Africa. Annals of the South African Museum 97:141225.Google Scholar
Kool, S. P. 1993. Phylogenetic analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia 35:155159.Google Scholar
Landau, B. M., and Petit, R. E. 1997. New species of Cancellarioidea (Mollusca: Gastropoda) from the lower Miocene Cantaure Formation of Venezuela. Tulane Studies in Geology and Paleontology 29:145150.Google Scholar
Landini, W., Bianucci, G., Carnevale, G., Ragaini, L., Sorbini, C., Valleri, G., Visconti, M., Cantalamessa, G., and di Celma, C. 2002. Late Pliocene fossils of Ecuador and their role in the development of the Panamic bioprovince after the rising of Central American isthmus. Canadian Journal of Earth Sciences 39:2741.Google Scholar
Lutaenko, K. A. 1993. Climatic optimum during the Holocene and the distribution of warm-water mollusks in the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 102:273281.Google Scholar
Lyons, W. G. 1991. Post-Miocene species of Latirus Montfort, 1810 (Mollusca: Fasciolariidae) of southern Florida, with a review of regional marine biostratigraphy. Bulletin of the Florida Museum of Natural History (Biological Sciences) 35:131208.Google Scholar
MacNeil, F. S., and Dockery, D. T. III. 1984. Lower Oligocene Gastropoda, Scaphopoda, and Cephalopoda of the Vicksburg Group in Mississippi. Mississippi Department of Natural Resources, Bureau of Geology, Bulletin 124:1415.Google Scholar
Malatesta, A., and Zarlenga, F. 1986. Northern guests in the Pleistocene Mediterranean Sea. Geologica Romana 25:91154.Google Scholar
Marincovich, L. Jr. 1988. The recognition of an earliest middle Miocene warm-water event in the southwestern Alaskan molluscan fauna. Saito Ho-On Kai Special Publication 2:124.Google Scholar
Marincovich, L. Jr 2000. Central American paleogeography controlled Pliocene Arctic Ocean molluscan migrations. Geology 28:551554.2.0.CO;2>CrossRefGoogle Scholar
Meijer, T., and Preece, N. C. 1995. Malacological evidence relating to the insularity of the British Isles during the Quaternary. In Preece, R. C., ed. Island Britain: a Quaternary perspective. Geological Society of London Special Publication 96:89110.Google Scholar
Merle, D., and Houart, R. 2003. Ontogenetic changes of the spiral cords as keys [sic] innovation of the muricid sculptural patterns: the example of the Muricopsis-Murexsul lineages (Gastropoda: Muricidae: Muricopsinae). Comptes Rendus Palevol 2:547561.Google Scholar
Molnar, P., and Cane, M. A. 2002. El Niño's tropical climate and teleconnections as a blueprint for pre-Ice Age climates. Paleoceanography 17, Article 1021.Google Scholar
Mullins, H. T., Gardulski, A. F., Wise, S. W. Jr., and Applegate, J. 1987. Middle Miocene oceanographic event in the eastern Gulf of Mexico: implications for seismic stratigraphic succession and Loop Current/Gulf Stream circulation. Geological Society of America Bulletin 98:702713.Google Scholar
Oliver, P. G., and von Cosel, R. 1993a. Taxonomy of West African bivalves IV. Arcidae. Bulletin du Muséum National d'Histoire Naturelle, Paris, A 14:291381.Google Scholar
Oliver, P. G., and von Cosel, R. 1993b. Taxonomy of West African bivalves. V. Noetiidae. Bulletin du Muséum National d'Histoire Naturelle, Paris, A 14:655691.Google Scholar
Pastorino, G. 1991. The genus Chama Linné (Bivalvia) in the marine Quaternary of northern Patagonia, Argentina. Journal of Paleontology 65:756760.Google Scholar
Petuch, E. J. 1982a. Geographical heterochrony: contemporaneous coexistence of Neogene and Recent molluscan faunas in the Americas. Palaeogeography, Palaeoclimatology, Palaeoecology 37:277312.Google Scholar
Petuch, E. J. 1982b. Notes on the molluscan paleoecology of the Pinecrest beds at Sarasota, Florida with the description of Pyruella, a stratigraphically important new genus (Gastropoda: Melongenidae). Proceedings of the Academy of Natural Sciences of Philadelphia 134:1230.Google Scholar
Petuch, E. J. 1986. The Pliocene reefs of Miami: their geomorphological significance in the evolution of the Atlantic coastal ridge, southeastern Florida, U.S.A. Journal of Coastal Research 2:391408.Google Scholar
Petuch, E. J. 1987. New Caribbean molluscan faunas. Coastal Education and Research Foundation, Charlottesville, Va. Google Scholar
Petuch, E. J. 1988. Neogene history of tropical American mollusks: biogeography and evolutionary patterns of tropical western Atlantic Mollusca. Coastal Education and Research Foundation, Charlottesville, Va. Google Scholar
Petuch, E. J. 1989. New species of Malea (Gastropoda Tonnidae) from the Pleistocene of southern Florida. Nautilus 103:9295.Google Scholar
Petuch, E. J. 1991. New gastropods from the Plio-Pleistocene of southwestern Florida and the Everglades Basin. W. H. Dall Paleontological Research Center, Special Publication 1:159.Google Scholar
Petuch, E. J. 1993. Patterns of diversity and extinction in Transmarian muricacean, buccinacean, and conacean gastropods. Nautilus 106:155173.Google Scholar
Petuch, E. J. 1994. Atlas of Florida fossil shells (Pliocene and Pleistocene marine gastropods). Chicago Spectrum Press, Evanston, Ill.Google Scholar
Petuch, E. J. 1997. Coastal paleoceanography of eastern North America (Miocene-Pleistocene). Kendall/Hunt, Dubuque, Iowa. Google Scholar
Petuch, E. J. 2004. Cenozoic seas: the view from eastern North America. CRC Press, Boca Raton, Fla. Google Scholar
Raffi, S. 1986. The significance of marine boreal molluscs in the early Pleistocene fauna of the Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 52:267289.Google Scholar
Ravelo, A. C., Andreasson, D. H., Lyle, M., Olivarez-Lyle, A., and Wara, M. W. 2004. Regional climate shifts caused gradual global cooling in the Pliocene epoch. Nature 429:263267.Google Scholar
Reid, D. G. 2002. The genus Nodilittorina von Martens, 1897 (Gastropoda: Littorinidae) in the eastern Pacific Ocean, with a discussion of biogeographic provinces of the rocky-shore fauna. Veliger 45:85170.Google Scholar
Río, C. J. del. 2004. Tertiary marine molluscan assemblages of eastern Patagonia (Argentina): a biostratigraphic analysis. Journal of Paleontology 78:10971122.Google Scholar
Roopnarine, P. D. 1996. Systematics, biogeography and extinction of chionine bivalves (Bivalvia: Veneridae) in tropical America: early Oligocene-Recent. Malacologia 38:103142.Google Scholar
Roopnarine, P. D. 1997. Endemism and extinction of a new genus of chionine (Veneridae: Chioninae) bivalve from the late Neogene of Venezuela. Journal of Paleontology 71:10391046.Google Scholar
Roopnarine, P. D. 2001. A history of diversification, extinction, and invasion in tropical America as derived from species-level phylogenies of chionine genera (family Veneridae). Journal of Paleontology 75:644657.Google Scholar
Roopnarine, P. D., and Vermeij, G. J. 2000. One species becomes two: the case of Chione cancellata, the resurrected C. elevata, and a phylogenetic analysis of Chione. . Journal of Molluscan Studies 66:517534.CrossRefGoogle Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology in the northern Dominican Republic 1. Field surveys, lithology, environment, and age. Bulletins of American Paleontology 89:179.Google Scholar
Sax, D. F. 2001. Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. Journal of Biogeography 28:139150.Google Scholar
Sax, D. F., and Brown, J. H. 2000. The paradox of invasion. Global Evolution and Biogeography 9:363371.Google Scholar
Sax, D. F., and Gaines, S. D. 2003. Species diversity: from global decreases to local increases. Trends in Ecology and Evolution 18:561566.Google Scholar
Sax, D. F., Gaines, S. D., and Brown, J. H. 2002. Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. American Naturalist 160:766783.Google Scholar
Silva, C. Marques da, Landau, B., and Martinell, J. 2000. The genus Solariella (Mollusca, Archaeogastropoda) from the Pliocene of Vale de Freixo, Portugal: palaeobiogeographic and palaeoclimatic implications. Contributions to Tertiary and Quaternary Geology 37:5765.Google Scholar
Símonarson, L. A., and Leifsdóttir, O. E. 2002. Late-Holocene sea-level changes in south and southwest Iceland reconstructed from littoral molluscan stratigraphy. The Holocene 12:149158.Google Scholar
Símonarson, L. A., Petersen, K. S., and Funder, S. 1998. Molluscan palaeontology of the Pliocene-Pleistocene Kap København Formation, north Greenland. Meddelelser om Grønland, Geoscience 36:1104.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:1736.Google Scholar
Vermeij, G. J. 1991a. When biotas meet: understanding biotic interchange. Science 253:10991104.Google Scholar
Vermeij, G. J. 1991b. Marine extinctions and their implications for conservation and biogeography. Pp. 143148 in Dudley, E. C., ed. The unity of evolutionary biology. Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology, Vol. I. Dioscorides, Portland, Ore. Google Scholar
Vermeij, G. J. 1996. Marine biological diversity: muricid gastropods as a case study. Pp. 355375 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology: in honor of James W. Valentine. University of Chicago, Chicago.Google Scholar
Vermeij, G. J. 1997. Strait answers from a twisted isthmus. Paleobiology 23:263269.Google Scholar
Vermeij, G. J. 2001a. Innovation and evolution at the edge: origins and fates of gastropods with a labral tooth. Biological Journal of the Linnean Society 72:461508.Google Scholar
Vermeij, G. J. 2001b. Distribution, history, and taxonomy of the Thais clade (Gastropoda: Muricidae) in the Neogene of tropical America. Journal of Paleontology 75:697705.Google Scholar
Vermeij, G. J. 2001c. Community assembly in the sea: geologic history of the living shore biota. Pp. 3960 in Bertness, M. D., Gaines, S. D., and Hay, M. E., eds. Marine community ecology. Sinauer, Sunderland, Mass. Google Scholar
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton.Google Scholar
Vermeij, G. J. 2005. Invasion as expectation: a historical fact of life. In Sax, D. F., Stachowitz, J. J., and Gaines, S. D., eds. Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland, Mass. (in press).Google Scholar
Vermeij, G. J. In press. The Cantharus group of pisaniine buccinid gastropods: review of the Oligocene to Recent genera and description of some new species of Gemophos and Hesperisternia . Cainozoic Research.Google Scholar
Vermeij, G. J., and Carlson, S. J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology 26:1946.Google Scholar
Vermeij, G. J., and Herbert, G. S. 2004. A new species of Stramonita (Gastropoda: Muricidae) from the Late Pliocene of Florida. Nautilus 118:157159.Google Scholar
Vermeij, G. J., and Rosenberg, G. 1993. Giving and receiving: the tropical Atlantic as donor and recipient region for invading species. American Malacological Bulletin 10:181194.Google Scholar
Vermeij, G. J., and Snyder, M. A. 2002. Leucozonia and related genera of fasciolariid gastropods: shell-based taxonomy and relationships. Proceedings of the Academy of Natural Sciences of Philadelphia 152:2344.Google Scholar
Vermeij, G. J., and Vokes, E. H. 1997. Cenozoic Muricidae of the western Atlantic region, Part XII. The subfamily Ocenebrinae (in part). Tulane Studies in Geology and Paleontology 29:69118.Google Scholar
Vermeij, G. J., Dudley, E. C., and Zipser, E. 1989. Successful and unsuccessful drilling predation in Recent pelecypods. Veliger 32:266273.Google Scholar
Vokes, E. H. 1966. The genus Vasum (Mollusca: Gastropoda) in the New World. Tulane Studies in Geology 5:136.Google Scholar
Vokes, E. H. 1967. The genus Vitularia (Mollusca: Gastropoda) discovered in the Miocene of southern Florida. Tulane Studies in Geology 5:9092.Google Scholar
Vokes, E. H. 1970. Notes on the fauna of the Chipola Formation. III. Two new species of Vasum (Mollusca: Gastropoda), with comments on Vasum haitense (Sowerby). Tulane Studies in Geology and Paleontology 8:8892.Google Scholar
Vokes, E. H. 1986. Notes on the fauna of the Chipola Formation. XXX. On the presence of Eudolium (Galeodolium) subfasciatum Sacco (Gastropoda: Tonnidae). Tulane Studies in Geology and Paleontology 19:177180.Google Scholar
Vokes, E. H. 1989. Neogene paleontology in the northern Dominican Republic 8. The family Muricidae (Mollusca: Gastropoda). Bulletins of American Paleontology 97:594.Google Scholar
Vokes, E. H. 1990a. Cenozoic Muricidae of the western Atlantic region, Part VIII. Murex s.s., Haustellum, Chicoreus, and Hexaplex; additions and corrections. Tulane Studies in Geology and Paleontology 23:196.Google Scholar
Vokes, E. H. 1990b. On the occurrence of the gastropod genus Cassis in the Esmeraldas fauna, northwestern Ecuador. Tulane Studies in Geology and Paleontology 23:121126.Google Scholar
Vokes, E. H. 1992. Cenozoic Muricidae of the western Atlantic region, Part IX. Pterynotus, Poirieria, Aspella, Dermomurex, Calotrophon, Acantholabia, and Attiliosa; additions and corrections. Tulane Studies in Geology and Paleontology 25:1108.Google Scholar
Vokes, E. H. 1994. Cenozoic Muricidae of the western Atlantic region, Part X. Subfamily Muricopsinae. Tulane Studies in Geology and Paleontology 26:49160.Google Scholar
Vokes, E. H. 1996. Cenozoic Muricidae of the western Atlantic region, Part XI. The subfamily Ergalataxinae. Tulane Studies in Geology and Paleontology 29:2744.Google Scholar
Vokes, E. H. 1998. Neogene paleontology in the northern Dominican Republic 18. The superfamily Volutacea (in part) (Mollusca: Gastropoda). Bulletins of American Paleontology 113:154.Google Scholar
Vokes, E. H. 1999. Another look at the muricid genus Attiliosa . Veliger 42:289305.Google Scholar
Ward, L. W. 1992. Molluscan biostratigraphy of the Miocene, Middle Atlantic Coastal Plain of North America. Virginia Museum of Natural History Memoir 2:1159.Google Scholar
Webb, S. D. 1969. Extinction-origination equilibria in late Cenozoic land mammals of North America. Evolution 23:688702.Google Scholar
Woodring, W. P. 1964. Geology and paleontology of Canal Zone and adjoining parts of Panama: description of Tertiary mollusks (gastropods: Columbellidae to Volutidae). U.S. Geological Survey Professional Paper 306-C:241297.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. American Philosophical Society Proceedings 110:425433.Google Scholar
Zinsmeister, W. J., and Emerson, W. K. 1979. The role of passive dispersal in the distribution of hemipelagic invertebrates, with examples from the tropical Pacific Ocean. Veliger 22:3240.Google Scholar
Zullo, V. A. 1992. Revision of the balanid barnacle genus Concavus Newman, 1982, with the description of a new subfamily, two new genera, and eight new species. Paleontological Society Memoir 27:146. 48 Google Scholar