Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T11:19:46.218Z Has data issue: false hasContentIssue false

On the statistical detection of cycles in extinctions in the marine fossil record

Published online by Cambridge University Press:  08 April 2016

James F. Quinn*
Affiliation:
Division of Environmental Studies and Department of Zoology, University of California, Davis, California 95616

Abstract

Periodicity has recently been reported in the extinction rates of fossil marine families since the Permian. The analysis used appears particularly sensitive to parameter estimation techniques, particularly in the definition of mass extinctions. It also fails to incorporate autocorrelation in the fossil record into its null hypothesis and rests on an inappropriate a posteriori comparison to the null hypothesis. An alternative analysis, examining the time-lags between periods of high extinction rates, produces no evidence of a cycle.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1981. Major marine cycles in the Mesozoic. J. Geol. Soc. London. 138:159166.CrossRefGoogle Scholar
Barham, S. Y. and Dunstan, F. D. J. 1982. Missing values in time series. Pp. 609649. In: Anderson, O. D., ed. Applied Time Series Analysis: theory and practice 2. North-Holland; Amsterdam.Google Scholar
Benton, M. 1985. Mass extinction among non-marine tetrapods. Nature. 316:811814.Google Scholar
Benton, M. 1986. More than one event in the late Triassic mass extinction. Nature. 321:857861.Google Scholar
Box, G. E. P. and Jenkins, G. M. 1976. Time Series Analysis. 575 pp. Holden-Day; San Francisco.Google Scholar
Connor, E. R. 1986. Time series analysis of the fossil record. Pp. 119147. In: Raup, D. M. and Jablonski, D., eds. Patterns and Processes in the History of Life. Dahlem Konferenzen 1986. Springer-Verlag; Berlin.Google Scholar
Conover, W. J. 1980. Practical Nonparametric Statistics, 2nd ed.462 pp. Wiley; New York.Google Scholar
Dunsmuir, W. 1981. Estimation for stationary time series when data are irregularly spaced or missing. Pp. 609649. In: Findley, D. E. F., ed. Applied Time Series Analysis II. Academic Press; New York.Google Scholar
Efron, B. and Gong, G. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat. 37:3648.Google Scholar
Fischer, A. G. and Arthur, M. A. 1977. Secular variation in the pelagic realm. SEPM Spec. Publ. No. 25:1950.Google Scholar
Flessa, K. W. and Jablonski, D. 1985. Declining Phanerozoic background extinction rates: effect of taxonomic structure. Nature. 313:216218.CrossRefGoogle Scholar
Hallam, A. 1986. The Pliensbachian and Tithonian extinction events. Nature. 319:765768.Google Scholar
Harland, W. B., Cox, A. V., Llewelln, P. G., Picton, C. A. G., Smith, A. G., and Walters, R. 1982. A Geologic Time Scale. 131 pp. Cambridge University Press; Cambridge, England.Google Scholar
Hoffman, A. 1985. Patterns of family extinction depend upon the definition and geological timescale. Nature. 315:659662.CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science. 213:129133.Google Scholar
Kitchell, J. A. and Estabrook, G. 1986. Was there 26-Myr periodicity of extinctions? Nature. 321:534535.CrossRefGoogle Scholar
Kitchell, J. A. and Pena, D. 1985. Periodicity of extinction in the geologic past: deterministic vs. stochastic explanations. Science. 226:689692.CrossRefGoogle Scholar
May, R. M. 1975. Patterns of species abundance and diversity. Pp. 81120. In: Cody, M. L. and Diamond, J. M., eds. Ecology and Evolution of Communities. Harvard Univ Press; Cambridge.Google Scholar
Odin, G. S., ed. 1982. Numerical Dating in Stratigraphy. 1040 pp. Wiley; Somerset, New Jersey.Google Scholar
Palmer, A. R. 1983. The decade of North American Geology 1983 geologic time scale. Geology. 11:503504.Google Scholar
Quinn, J. F. 1983. Mass extinctions in the marine fossil record. Science. 219:12391240.CrossRefGoogle Scholar
Rampino, M. R. and Stothers, R. B. 1984. Geological rhythms and cometary impacts. Science. 226:14271431.Google Scholar
Raup, D. M. 1986. Biological extinction in earth history. Science. 231:15281533.CrossRefGoogle ScholarPubMed
Raup, D. M. and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science. 215:15011503.Google Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1984. Periodicty of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA. 81:801805.CrossRefGoogle Scholar
Raup, D. M. and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science. 231:833836.CrossRefGoogle ScholarPubMed
Raup, D. M., Sepkoski, J. J. Jr., and Stigler, S. M. 1983. Mass extinctions in the fossil record. Science. 219:12401241.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of marine fossil families. Milwaukee Contrib. Biol. Geol. 51:1125.Google Scholar
Sepkoski, J. J. Jr. 1986. Global bioevents and the question of periodicity. Pp. 4761. In: Walliser, O., ed. Global Bio-Events. Lecture Notes in Earth Sciences, Vol. 8. Springer-Verlag; Berlin.Google Scholar
Sepkoski, J. J. Jr. and Raup, D. M. 1986. Periodicity in marine extinction events. Pp. 336. In: Elliott, D. K., ed. Dynamics of Extinction. Wiley; New York.Google Scholar