Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T09:13:09.714Z Has data issue: false hasContentIssue false

On The Measurement of Morphology and its Change

Published online by Cambridge University Press:  08 April 2016

Richard H. Benson
Affiliation:
Smithsonian Inst., Washington, D.C. 20560
Ralph E. Chapman
Affiliation:
Smithsonian Inst., Washington, D.C. 20560
Andrew F. Siegel
Affiliation:
Statistics, Princeton University, Princeton, New Jersey 08540

Extract

Few would argue with the assertion that within the practice of comparative morphology, the comparison of shapes is fundamental to any line of synthesis in paleontology. Yet the common act of such a comparison involves a great range of judgments concerning the homology, correspondence and divergence of form of various parts of any two related shapes. Considerations of similarity must include the scalar effects of size and material, the conversion of proportions as descriptive geometric dimensions to those useful numerical values that will be represented as ratios of measured distance (relative or compared against a standard), and, by no means insignificant, the judgment about the design or functional geometry implicit in the static as well as dynamic systems being measured. This review is concerned with these considerations and with quantitative comparisons of biological shape wherein some parts of specimens obviously have changed and others parts have not.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anstey, R. L. and Pachut, J. F. 1980. Fourier packing ordinate: a univariate size-independent measurement of the polygonal packing variation in Paleozoic Bryozoans. Math. Geol. 12(2):139156.Google Scholar
Appleby, R. M. and Jones, G. L. 1976. The analogue video reshaper—a new tool for paleontologists. Palaeontology. 19:565586.Google Scholar
Benson, Richard H. 1967. Muscle-scar patterns of Pleistocene (Kansan) ostracodes. Pp. 211241. In: Teichert, C. and Yochelson, E. L., eds. Essays in Paleontology and Stratigraphy. R. C. Moore Commemorative Volume. Dept. Geol., Univ. Kansas, Spec. Publ. No. 2, 626 pp.Google Scholar
Benson, Richard H. 1975. Morphologic stability in Ostracoda. Bull. Am. Paleontol. 65(282):1346.Google Scholar
Benson, R. H. 1976A. The evolution of the ostracode Costa analyzed by “Theta-Rho difference.” Abh. Verh. Naturwissensch. Vereins Hamburg (NF) 18/19(suppl.):127139.Google Scholar
Benson, R. H. 1976B. Testing the Messinian salinity crisis biodynamically: Introduction. Palaeogeogr., Palaeoclimatol., Palaeoecol. 20:311.Google Scholar
Benson, R. H. 1976C. Changes in the ostracodes of the Mediterranean with the Messinian salinity crisis. Paleogeogr., Palaeoclimatol., Palaeoecol. 20:147170.Google Scholar
Benson, R. H. 1977. Evolution of Oblitacythereis from Paleocosta (Ostracoda: Trachyleberididae) during the Cenozoic in the Mediterranean and Atlantic. Smithsonian Contrib. Palaeobiol. No. 33:147.Google Scholar
Benson, R. H. 1979. In search of lost oceans: a paradox of discovery. Pp. 379389. In: Boucot, A. J. and Gray, J., eds. Historical Biogeography, Plate Tectonics and the Changing Environment. Oregon State Univ. Press.Google Scholar
Benson, R. H. 1981. Form, Function and Architecture of ostracode shells. Annu. Rev. Earth and Planetary Sci. 9:5980.Google Scholar
Benson, R. H.In Press. Deformation, DaVinci's concept of form, and the analysis of events in evolutionary history. In: Gallitelli, E. M. and Russo, A., eds. Paleontology, Essential of Historical Geology, to be published by Univ. Modena, Musseo Storia Naturale di Venezia and Centro Studi Recerche Ligabue (Venice, Italy).Google Scholar
Blackith, R. E. and Reyment, R. A., 1971. Multivariate Morphometrics. Academic Press; 412 pp. New York.Google Scholar
Bookstein, F. L. 1977A. Orthogenesis of the hominids: an exploration using biorthogonal grids. Science. 197:901904.Google Scholar
Bookstein, F. L. 1977B. The study of shape transformation after D'Arcy Thompson. Math. Biosci. 34:177219.Google Scholar
Bookstein, F. L. 1978. The Measurement of Biological Shape and Shape Change. 191 pp. Lecture Notes in Biomathematics No. 24. Springer-Verlag: New York.Google Scholar
Bookstein, F. L. 1980. When one form is between two others: an application of biorthogonal analysis. Am. Zool. 20:627641.Google Scholar
Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B., Elder, R. L., and Smith, G. R. 1982. A comment upon the uses of Fourier methods in systematics. Syst. Zool. 31(1):8592.Google Scholar
Brinkmann, R. 1929. Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten uber Artbegriff und Stammesentwicklung. Abh. Ges. Wiss. Gottingen. Math.-Phys. Kl., N.F. 13(3):1249.Google Scholar
Brower, J. C. and Veinus, J. 1978. Multivariate analysis of allometry using point coordinates. J. Paleontol. 52(5):10371053.Google Scholar
Clark, M. W. 1981. Quantitative shape analysis: a review. Math. Geol. 13(4):8592.Google Scholar
Cook, T. A. 1914. The Curves of Life. 479 pp. Constable and Company: London. Dover Publications Edition: New York.Google Scholar
Davis, J. C. 1973. Statistics and Data Analysis in Geology. 550 pp. Wiley; New York.Google Scholar
Ehrlich, R. and Weinberg, B. 1970. An exact method for characterization of grain shape. J. Sediment. Petrol. 40(1):205212.Google Scholar
Enlow, D. H. 1975. Handbook of Facial Growth. 423 pp. W. B. Saunders Co.; Philadelphia.Google Scholar
Frazzetta, T. H. 1970. From hopeful monsters to bolyerine snakes? Am. Nat. 104:5572.Google Scholar
Goldschmidt, R. 1933. Some aspects of evolution. Science. 89:539547.Google Scholar
Goldschmidt, R. 1940. The Material Basis of Evolution. 436 pp. Yale University Press; New Haven.Google Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev., Cambridge Phil. Soc. 41:587640.CrossRefGoogle ScholarPubMed
Healy-Williams, N. and Williams, D. F. 1981. Fourier analysis of test shape of planktonic forminifera. Nature. 289:485487.CrossRefGoogle Scholar
Huffman, T., Christopher, R. A., and Hazel, J. E. 1978. Orthogonal mapping: a computer program for quantifying shape differences. Computers and Geosci. 4:121130.Google Scholar
Huxley, J. S. 1932. Problems of Relative Growth. 312 pp. Methuen & Co.; London. Dover Publ. ed.; New York.Google Scholar
Huxley, J. 1963. Evolution, The Modern Synthesis. 2nd ed.652 pp. Allen and Unwin; London.Google Scholar
Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. Bull., Am. Mus. Nat'l. Hist. 108(2):211252.Google Scholar
Kaesler, R. L. and Waters, J. A. 1972. Fourier analysis of the ostracode margin. Bull., Geol. Soc. Am. 83:11691178.Google Scholar
Kaesler, R. L. and Maddocks, R. F. 1979. Carapace outlines of macrocypridid Ostracoda: harmonic distance analysis. Geol. Soc. Am., Abstracts with Programs 11(7):453.Google Scholar
Lestrel, P. E. 1974. Some problems in the assessment of morphological size and shape differences. Yearbook of Phys. Anthropol. 18:140162.Google Scholar
Lohmann, G. P.In Press. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Math. Geol.Google Scholar
Lull, R. S. and Gray, S. W. 1949. Growth patterns in the Ceratopsia. Am. J. Sci. 247:492503.Google Scholar
Moseley, H. 1842. On conchyliometry. Philos. Mag. Series 3. 21(138):300305.Google Scholar
Olson, E. C. and Miller, R. L. 1958. Morphological Integration. 317 pp. Univ. Chicago Press; Chicago.Google Scholar
Oxnard, Charles. 1973. Form and Pattern in Human Evolution. 218 pp. Univ. Chicago Press; Chicago.Google Scholar
Oxnard, C. E. 1978. One biologists view of morphometrics. Annu. Rev. Ecol. Syst. 9:219241.Google Scholar
Oxnard, C. E. 1980. The analysis of form: without measurement and without computers. Am. Zool. 20:695705.Google Scholar
Raup, D. M. 1961. The geometry of coiling in gastropods. Proc., Nat'l. Acad. Sci. 47:602609.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40(5):11781190.Google Scholar
Raup, D. M. and Stanley, S. M. 1971. Principles of Paleontology. 387 pp. W. H. Freeman & Co.; San Francisco.Google Scholar
Raup, David M. and Crick, Rex E. 1981. Evolution of single characters in the Jurassic Ammonite Kosmoceras. Paleobiology. 7:200215.Google Scholar
Schooley, C., Hickman, C. S., and Lane, W. C, 1981. Computer graphic analysis of stereo micrographs as a taxonomic tool. The Veliger. 24:205207.Google Scholar
Scott, G. H. 1975. An automated coordinate recorder for biometry. Lethaia. 8:4951.Google Scholar
Scott, G. H. 1980. The value of outline processing the biometry and systematics of fossils. Palaeontology. 23:757768.Google Scholar
Siegel, A. F., 1982. Geometric Data Analysis: An Interactive graphics program for Shape Comparison Pp. 103122. In: Launer, R. L. and Siegel, A. F., eds. Modern Data Analysis. Acad. Press; New York.Google Scholar
Siegel, A. F. and Benson, R. H. 1982. A robust comparison of biological shapes. Biometrics. 38:341350.Google Scholar
Siegel, A. F. and Pinkerton, J. R. 1982. A robust comparison of the three dimensional configurations of protein molecules. 18 pp. Tech. Rep. 224, Ser. 2, Dept. Statistics Princeton Univ.Google Scholar
Siegel, A. F., Olsham, A. F., and Swindler, D. R. 1982. Robust and Least-Squares Orthogonal Mapping: Methods for the Study of Cephalofacial Form and Growth. 17 pp. Tech. Rep. 222 Ser. 2Dept. Statistics Princeton Univ.Google Scholar
Sneath, P. H. A. 1967. Trend-surface analysis of transformation grids. J. Zool. London. 151:65122.Google Scholar
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical Taxonomy. 573 pp. Freeman; San Francisco.Google Scholar
Takeshita, Koji, Fujita, H., and Kawasaki, S. 1978. Carapace moire topography in crabs. Bull. Far Seas Fish. Res. Lab. No. 16:115119.Google Scholar
Thompson, D'Arcy W. 1915. Morphology and mathematics. Trans. R. Soc. Edinburgh. 50:857895.Google Scholar
Thompson, D'Arcy W. 1917. On Growth and Form. 794 pp. Cambridge University Press; Cambridge.Google Scholar
Thompson, D'Arcy W. 1942. On Growth and Form, 2nd Ed. in two vols. (reprinted 1963). 1116 pp. Cambridge University Press; Cambridge.Google Scholar
Tobler, W. R. 1977. Bidimensional regression. A computer program. Published by the author, Geogr. Dept., U. Calif. at Santa Barbara. 72 pp.Google Scholar
Tobler, W. R. 1978. Comparison of plane forms. Geogr. Analysis. 10(2):154162.Google Scholar
Walker, G. F. and Kowalski, C. T. 1971. A two-dimensional coordinate model for the quantification, description, analysis, prediction and simulation of craniofacial growth. Growth. 35:191211.Google ScholarPubMed
Younker, J. L. and Ehrlich, R. 1977. Fourier biometrics: harmonic amplitudes as multivariate shape descriptors. Syst. Zool. 26:336342.Google Scholar
Zahn, C. T. and Roskies, R. Z. 1972. Fourier descriptors for plane closed curves. I.E.E.E. Transactions on Computers. c-21(3):269281.Google Scholar