Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T13:20:25.073Z Has data issue: false hasContentIssue false

Non-adaptive change in early land plant evolution

Published online by Cambridge University Press:  08 April 2016

David C. Wight*
Affiliation:
Department of Botany, Ohio University, Athens, Ohio 45701

Abstract

Primary vascular architecture of members of the Paleozoic Aneurophytales (Progymnosper-mopsida) is described. This architecture is somewhat more complex but fundamentally similar (homologous) to that of members of the Trimerophytina, putative ancestors of aneurophytes. It is suggested that the presence of complex stelar morphology in aneurophytes was epiphenomenal, a passive result of changes in growth and development in a trimerophyte-like ancestor. Specifically, I suggest that the evolutionary transformation in primary vascular architecture from haplostele to ribbed protostele was a direct consequence of changes that affected the vertical spacing and degree of organization of lateral appendages in early vascular plants. This view is in sharp contrast to adaptationist explanations of change in stelar morphology expressed by other authors and provides an example of non-adaptive change in evolution.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, H. P. 1968. The early history of land plants. Pp. 73108. In: Drake, E., ed. Evolution and Environment. Yale Univ. Press; New Haven.Google Scholar
Banks, H. P. 1980a. The role of Psilophyton in the evolution of vascular plants. Rev. Palaeobot. Palynol. 29:165176.CrossRefGoogle Scholar
Banks, H. P. 1980b. Floral assemblages in the Siluro-Devonian. Pp. 124. In: Dilcher, D. L. and Taylor, T. N., eds. Biostratigraphy of Fossil Plants. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Banks, H. P. 1981. Time of appearance of some plant biocharacters during Siluro-Devonian time. Can. J. Bot. 59:12921296.Google Scholar
Banks, H. P., Leclercq, S., and Hueber, F. M. 1975. Anatomy and morphology of Psilophyton dawsonii, sp. n. from the late Lower Devonian of Quebec (Gaspé), and Ontario, Canada. Palaeontogr. Am. 8:77127.Google Scholar
Beck, C. B., Schmid, R., and Rothwell, G. W. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev. 48:691815.CrossRefGoogle Scholar
Bidwell, R. G. S. 1974. Plant Physiology. 643 pp. Macmillan; New York.Google Scholar
Bierhorst, D. W. 1971. Morphology of Vascular Plants. 560 pp. Macmillan; New York.Google Scholar
Bower, F. O. 1908. The Origin of a Land Flora: A Theory Based on the Facts of Alternation. 727 pp. Macmillan and Co.; London.Google Scholar
Bower, F. O. 1930. Size and Form in Plants, with Special Reference to the Conducting Tracts. 232 pp. Macmillan and Co.; London.Google Scholar
Chaloner, W. G. and Sheerin, A. 1979. Devonian macrofloras. Spec. Pap. Palaeontol. 23:145161.Google Scholar
Foster, A. S. and Gifford, E. M. 1974. Comparative Morphology of Vascular Plants. 751 pp. W. H. Freeman and Co.; San Francisco.Google Scholar
Gensel, P. G. 1984. A new Lower Devonian plant and the early evolution of leaves. Nature. 309:785787.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian Paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205:581598.Google Scholar
Gould, S. J. and Vrba, E. S. 1982. Exaptation—A missing term in the science of form. Paleobiology. 8:415.Google Scholar
Koch, W. F. 1984. Brachiopod community paleoecology, paleobiogeography, and depositional topography of the Devonian Onondaga Limestone and correlative strata in eastern North America. Lethaia. 14:83103.Google Scholar
Long, A. G. 1984. Oxroadopteris parvus gen. et sp. nov.: a protostelic Lower Carboniferous pteridosperm from Oxroad Bay, East Lothian, Scotland. Trans. Roy. Soc. Edinb.: Earth Sciences. 75:383389.CrossRefGoogle Scholar
Matten, L. C. 1973. The Cairo flora (Givetian) from eastern New York. I. Reimannia, terete axes, and Cairoa lamanekii gen. et sp. n. Am. J. Bot. 60:619630.Google Scholar
Matten, L. C. 1982. Rachial traces in early seed ferns. North Am. Paleontol. Conv., Proc. 2:359363.Google Scholar
May, B. I. and Matten, L. C. 1983. A probable pteridosperm from the uppermost Devonian near Ballyheigue, Co. Kerry, Ireland. Bot. J. Linn. Soc. 86:103123.Google Scholar
Niklas, K. J. 1984. Size-related change in the primary xylem anatomy of some early tracheophytes. Paleobiology 10:487506.Google Scholar
Scheckler, S. E. 1978. Ontogeny of progymnosperms. II. Shoots of Upper Devonian Archaeopteridales. Can. J. Bot. 56:31363170.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktionsmorphologie. Lethaia. 3:393396.CrossRefGoogle Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia. 5:325343.Google Scholar
Shininger, T. L. 1979. The control of vascular development. Ann. Rev. Plant Physiol. 30:313337.Google Scholar
Trant, C. A. and Gensel, P. G. 1985. Branching in Psilophyton: a new species from the Lower Devonian of New Brunswick, Canada. Am. J. Bot. 72:12561273.Google Scholar
Wight, D. C. 1985. Aneurophytalean progymnosperms from the Middle Devonian Millboro Shale of southwestern Virginia. 181 pp. Ph.D. dissertation. Univ. Michigan, Ann Arbor.Google Scholar