Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T11:29:46.544Z Has data issue: false hasContentIssue false

Nautilus hard parts: a study of the mineral and organic constitutents

Published online by Cambridge University Press:  08 February 2016

H. A. Lowenstam
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125
W. Traub
Affiliation:
Structural Chemistry Department, Weizmann Institute of Science, 76100 Rehovot, Israel
S. Weiner
Affiliation:
Incumbent of the Graham and Rhona Beck Career Development Chair, Isotope Department, Weizmann Institute of Science, 76100 Rehovot, Israel

Abstract

The mineralized hard parts of Nautilus, including the mandibles, statoconia, and uroliths, are more complex with respect to ultrastructure, mineralogy, trace element, and isotopic composition than was previously recognized. X-ray diffraction and amino acid composition analyses of the organic structural hard parts (siphuncle tube, shell wall and septum organic matrix, mandibles, and muscle tendon sheath) show that two different chitin-protein complexes are utilized by Nautilus. The mandible mineral hard parts are particularly complex, with five different minerals present in various locations. A comparison of the statoconia of Nautilus species with the statoliths of dibranchian cephalopods reveals an evolutionary trend in which carbonate is substituted for phosphate. This study also shows that Nautilus uses a number of different crystal-forming processes for constructing its hard parts. The data presented here provide a broad spectrum of information, which, when applied to the fossil counterparts, can be utilized for improving our understanding of ancient nautiloid biology.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Blackwell, J. 1969. Structure of β-chitin or parallel chain systems of poly-(1-4)-N-acetyl-D-glucosamine. Biopolymers. 7:281298.CrossRefGoogle ScholarPubMed
Blackwell, J. and Weih, M. A. 1980. Structure of chitin-protein complexes: ovipositor of the ichneumon fly Megarhyssa. J. Mol. Biol. 137:4960.CrossRefGoogle ScholarPubMed
Boggild, O. B. 1930. The shell structure of the mollusks. D. Kgl. Danske Vidensk. Selsk. Skriffer, Naturvidensk. og Mathem. Afd. 9 Raekke. II.Z.:233325.Google Scholar
Carlström, D. 1963. A crystallographic study of vertebrate otoliths. Biol. Bull. 125:441463.CrossRefGoogle Scholar
Clarke, M. R. 1978. The cephalopod statolith—an introduction to its form. J. Mar. Biol. Ass. U.K. 58:701712.CrossRefGoogle Scholar
Clarke, M. R. and Fitch, J. E. 1979. Statoliths of Cenozoic theuthoid cephalopods from North America. Palaeontology. 22:479511.Google Scholar
Foord, A. H. 1891. Mandibles of fossil nautiloids: in Catalogue of the fossil cephalopods in the British Museum (Natural History). Pt. 1: Nautiloidea. 399 pp. Longmans; London.Google Scholar
Glenister, B. F., Klapper, G., and Chauff, K. M. 1976. Conodont pearls? Science. 193:571573.CrossRefGoogle ScholarPubMed
Glenister, B. F., Klapper, G., and Chauff, K. M. 1978. Nautiloid uroliths composed of phosphatic hydrogel (Reply). Science. 199:209.CrossRefGoogle Scholar
Goffinet, G. 1969. Etude au microscope éléctronique de structures organisées des constituants de la conchioline de nacre de Nautilus macromphalus Sowerby. Comp. Biochem. Physiol. 29:835839.CrossRefGoogle Scholar
Gregoire, C. 1962. On submicroscopic structure of the Nautilus shell. Inst. Roy. Sci. Nat. Belg. Bull. 38:171.Google Scholar
Gregoire, C. 1973. On the submicroscopic structure of the organic components of the siphon in the Nautilus shell. Arch. Internat. Physiol. Biochem. 81:2.Google ScholarPubMed
Gregoire, C. 1980. The conchiolin matrices in nacreous layers of ammonoids and fossil nautiloids: a survey. Pt. 1: Shell wall and septa. Akad. Wissensch. und Lit. Mainz. Abh. Math. Naturwiss. Kl. Jahig. 1980. No. 2. 128 pp.Google Scholar
Griffin, L. E. 1900. The anatomy of Nautilus pompilius. Nat. Acad. Sci. U.S.A. 8 Mem. 5. 197 pp.Google Scholar
Hunt, S. and Nixon, M. 1981. A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker disc, radula and oesophageal cuticle of cephalopods. Comp. Biochem. Physiol. 68B:535546.Google Scholar
Lowenstam, H. A. 1964. Sr/Ca ratio of skeletal aragonites from recent marine biota at Palau and from fossil gastropods. In: Craig, H., Miller, S. L., and Wasserburg, G. J., eds. Isotopic and Cosmic Chemistry. North Holland; Amsterdam.Google Scholar
Lowenstam, H. A. 1981. Minerals formed by organisms. Science. 211:11261131.CrossRefGoogle ScholarPubMed
Lowenstam, H. A. and Weiner, S. 1983. Mineralization by organisms and the evolution of biomineralization. In: Westbroek, P. and de Jong, E. W., eds. Biomineralization and Biologic Metal Accumulation. Pp. 191203. Reidel; Dordrecht.CrossRefGoogle Scholar
MacDonald, J. D. 1855. On the anatomy of Nautilus umbilicatus compared with that of Nautilus pompilius. Phil. Trans. 277288.Google Scholar
Martin, A. W. 1975. Physiology of the excretionary organs of cephalopods. Fortschr. Zool. 23:112123.Google Scholar
McConnell, D. and Ward, P. 1978. Nautiloid uroliths composed of phosphatic hydrogel. Science. 199:208209.CrossRefGoogle ScholarPubMed
Milliman, J. D. 1974. Marine carbonates. Pt. 1. 375 pp. Springer-Verlag; New York.Google Scholar
Mutvei, H. 1972. Ultrastructural studies on cephalopod shells. Pt. 1. The septa and siphonal tube in Nautilus. Bull. Geol. Inst. Univ. Upsala, N.S. 3. 8:237261.Google Scholar
Nakahara, H. 1983. Calcification of gastropod nacre. In: Westbroek, P. and de Jong, E. W., eds. Biomineralization and Biologic Metal Accumulation. Pp. 225230. Reidel; Dordrecht.CrossRefGoogle Scholar
Okutani, R. and Mikami, S. 1977. Description on beaks of Nautilus macromphalus Sowerby. Jap. J. Malacol. 36:115121.Google Scholar
Saunders, W. B., Spinosa, C., Teichert, C., and Banks, R. C. 1978. The jaw apparatus of recent Nautilus and its palaeontological implications. Palaeontology. 21:129141.Google Scholar
Stenzel, H. B. 1964. Living Nautilus. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Pt. K. (Mollusca 3) K59-93. Univ. Kansas Press; Lawrence.Google Scholar
Tampa, A. S. and Watabe, N. 1976. Ultrastructural investigation of the mechanism of muscle attachment to the gastropod shell. J. Morphol. 149:339352.CrossRefGoogle Scholar
Teichert, C., et al. 1964. Treatise on Invertebrate Paleontology, Part K. 519 pp. Geol. Soc. Am. and Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Weiner, S. and Traub, W. 1980. X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett. 111:311316.CrossRefGoogle Scholar
Weiner, S. and Traub, W. 1984. Macromolecules in mollusk shells and their functions in biomineralization. Phil. Trans. Roy. Soc. Lond., 304B:421438.Google Scholar
Willey, A. 1902. Zoological Results. Pt. 6. Pp. 611830. Cambridge Univ. Press; Cambridge.Google Scholar