Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T06:53:29.822Z Has data issue: false hasContentIssue false

Morphometric analysis of humerus and femur shape in Morrison sauropods: implications for functional morphology and paleobiology

Published online by Cambridge University Press:  08 February 2016

Matthew F. Bonnan*
Affiliation:
Department of Biological Sciences, Western Illinois University, Macomb, Illinois 61455. E-mail: [email protected]

Abstract

Morphometric analyses of sauropod limbs have the potential to illuminate functional aspects of sauropod locomotion and paleobiology. However, analyses of sauropod limb dimensions typically show few discernible morphological trends because of large size differences among the individuals in a sample. For sauropods, combined analyses of both limb dimension and shape may be more desirable. Numerous humeri and femora from Apatosaurus, Diplodocus, and Camarasaurus provide an opportunity to explore and compare limb morphology in contemporaneous, sympatric sauropods. Thin-plate splines were used to analyze landmark-based shape differences in combination with traditional morphometrics. The aims of the analysis were (1) to determine if humerus and femur shape were significantly different among the genera; (2) to determine where shape changes occurred; and (3) to infer the basic functional implications of the shape differences using an Extant Phylogenetic Bracket approach. Few differences were detected among the genera using traditional morphometric analyses, and linear regression revealed a predominantly isometric relationship between most measurement variables and element size. Thin-plate splines revealed significant shape differences among the taxa. Apatosaurus humeri and femora were the most robust, with expanded regions for muscle insertion and more distally placed deltopectoral and caudofemoral landmarks. Diplodocus humeri and femora were gracile, with more proximally located landmarks of muscular insertion. Camarasaurus humeri were surprisingly gracile, with a less extensive deltopectoral crest, but had more robust femora similar to those of Apatosaurus. Few differences distinguished juvenile from adult specimens. These data suggest some locomotor differences were present among the three genera.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. M. 1989. Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York.Google Scholar
Alexander, R. M., and Jayes, A. S. 1983. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, London 201:135152.CrossRefGoogle Scholar
Ash, S. R., and Tidwell, W. D. 1998. Plant megafossils from the Brushy Basin Member of the Morrison Formation near Montezuma Creek Trading Post, Southeastern Utah. Modern Geology 22:321339.Google Scholar
Benton, M. J. 1997. Origin and early evolution of dinosaurs. Pp. 204215in Farlow, and Brett-Surman, 1997.Google Scholar
Birch, J. M. 1997. Comparing wing shape of bats: the merits of principal-components analysis and relative-warp analysis. Journal of Mammalogy 78:11871198.CrossRefGoogle Scholar
Bonnan, M. F. 2001. The evolution and functional morphology of sauropod dinosaur locomotion. Ph.D. dissertation. Northern Illinois University, DeKalb.Google Scholar
Bonnan, M. F. 2003. The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. Journal of Vertebrate Paleontology 23:595613.CrossRefGoogle Scholar
Bookstein, F. L. 1990. Higher-order features of shape change for landmark data. Pp. 237250in Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, New York.Google Scholar
Bookstein, F. L. 1996. Combining the tools of geometric morphometrics. Pp. 131151in Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E., eds. Advances in morphometrics. Plenum, New York.CrossRefGoogle Scholar
Bookstein, F. L., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R. 1985. Morphometrics in evolutionary biology. Special Publication No. 15. Academy of Natural Sciences, Philadelphia.Google Scholar
Calvo, J. O. 1994. Jaw mechanics in sauropod dinosaurs. GAIA 10:183193.Google Scholar
Carpenter, K., and Currie, P. J., eds. 1990. Dinosaur systematics: perspectives and approaches. Cambridge University Press, New York.CrossRefGoogle Scholar
Carrano, M. T. 1997. Mammals versus birds as models for dinosaur limb kinematics. Journal of Vertebrate Paleontology 17(Suppl. to No. 3):36A.Google Scholar
Carrano, M. T. 1998. Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology. Paleobiology 24:450469.CrossRefGoogle Scholar
Carrano, M. T. 1999. What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology 247:2942.CrossRefGoogle Scholar
Chapman, R. E. 1990a. Shape analysis in the study of dinosaur morphology. Pp. 2142in Carpenter, and Currie, 1990.Google Scholar
Chapman, R. E. 1990b. Conventional Procrustes approaches. Pp. 251267in Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology, Ann Arbor.Google Scholar
Chapman, R. E. 1997. Technology and the study of dinosaurs. Pp. 112135in Farlow, and Brett-Surman, 1997.Google Scholar
Chapman, R. E., and Weishampel, D. B. 1997a. Biometrics. Pp. 5962in Currie, P. J. and Padian, K., eds. Encyclopedia of dinosaurs. Academic Press, New York.Google Scholar
Carrano, M. T. 1997b. Computers and related technology. Pp. 137142in Currie, P. J. and Padian, K., eds. Encyclopedia of dinosaurs. Academic Press, New York.Google Scholar
Chin, K., and Kirkland, J. I. 1998. Probable herbivore coprolites from the Upper Jurassic Mygatt-Moore Quarry, Western Colorado. Modern Geology 22:249275.Google Scholar
Christiansen, P. 1997. Locomotion in sauropod dinosaurs. GAIA 14:4575.Google Scholar
Coombs, W. P. 1978. Theoretical aspects of cursorial adaptations in dinosaurs. Quarterly Review of Biology 53(12):393418.CrossRefGoogle Scholar
Curry, K. A. 1999. Ontogenetic history of Apatosaurus (Dinosauria: Sauropoda): new insights on growth rates and longevity. Journal of Vertebrate Paleontology 19:654665.CrossRefGoogle Scholar
Curtice, B. D., Foster, J. R., and Wilhite, D. R. 1997. A statistical analysis of sauropod limb elements. Journal of Vertebrate Paleontology 17(Suppl. to No. 3):41A.Google Scholar
Demko, T. M., and Parrish, J. T. 1998. Paleoclimatic setting of the Upper Jurassic Morrison Formation. Modern Geology 22:283296.Google Scholar
Dodson, P. 1990. Sauropod paleoecology. Pp. 402407in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Dodson, P., Behrensmeyer, A. K., Bakker, R. T., and McIntosh, J. S. 1980. Taphonomy and paleoecology of the dinosaur beds of the Jurassic Morrison Formation. Paleobiology 6:208232.CrossRefGoogle Scholar
Farlow, J. O., and Brett-Surman, M. K., eds. 1997. The complete dinosaur. Indiana University Press, Bloomington.Google Scholar
Farlow, J. O., Gatesy, S. M., Holtz, T. R., Hutchinson, J. R., and Robinson, J. M. 2000. Theropod locomotion. American Zoologist 40:640663.Google Scholar
Fiorillo, A. R. 1991. Paleoecological inferences based on the dental microwear patterns on the teeth of Camarasaurus and Diplodocus. Journal of Vertebrate Paleontology 11(Suppl. to No. 3):28A.Google Scholar
Foster, A. S., and Gifford, E. M. 1974. Comparative morphology of vascular plants, 2d ed.W. H. Freeman, San Francisco.Google Scholar
Foster, J. R. 1995. Allometric and taxonomic limb bone robustness variability in some sauropod dinosaurs. Journal of Vertebrate Paleontology 15(Suppl. to No. 3):29A.Google Scholar
Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16:170186.CrossRefGoogle Scholar
Gatesy, S. M. 1995. Functional evolution of the hindlimb and tail from basal theropods to birds. Pp. 219234in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, New York.Google Scholar
Gatesy, S. M. 1997. An electromyographic analysis of hindlimb function in Alligator during terrestrial locomotion. Journal of Morphology 234:197212.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Gatesy, S. M. 1999. Guineafowl hind limb function. II. Electromyographic analysis and motor pattern evolution. Journal of Morphology 240:127142.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Gatesy, S. M., and Middleton, K. M. 1997. Bipedalism, flight, and the evolution of theropod locomotor diversity. Journal of Vertebrate Palaeontology 17:308315.CrossRefGoogle Scholar
George, J. C., and Berger, A. J. 1966. Avian myology. Academic Press, New York.Google Scholar
Haines, R. W. 1942. The evolution of epiphyses and endochondral bone. Biological Reviews 17:267292.CrossRefGoogle Scholar
Hildebrand, M., and Goslow, G. 2001. Analysis of vertebrate structure, 5th ed.Wiley, New York.Google Scholar
Horner, J. R., Padian, K., and de Ricqlès, A. 2001. Comparative osteohistology of some embryonic and perinatal archosaurs: developmental and behavioral implications for dinosaurs. Paleobiology 27:3958.2.0.CO;2>CrossRefGoogle Scholar
Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19:497499.CrossRefGoogle Scholar
Jones, T. D., Farlow, J. O., Ruben, J. A., Henderson, D. M., and Hillenius, W. J. 2000. Cursoriality in bipedal archosaurs. Nature 406:716718.CrossRefGoogle ScholarPubMed
Lehman, T. M. 1990. The ceratopsian subfamily Chasmosaurinae: sexual dimorphism and systematics. Pp. 211229in Carpenter, and Currie, 1990.Google Scholar
Liem, K. F., Bemis, W. E., Walker, W. F., and Grande, L. 2001. Functional anatomy of the vertebrates, 3d ed.Harcourt College Publishers, New York.Google Scholar
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape visualization and analysis. Paleobiology 25:107138.Google Scholar
MacLeod, N. 2002. Phylogenetic signals in morphometric data. Pp. 100138in MacLeod, N. and Forey, P. L., eds. Morphology, shape, and phylogeny. Taylor and Francis, NY.CrossRefGoogle Scholar
McIntosh, J. S. 1990. Sauropoda. Pp. 345401in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
McIntosh, J. S., Brett-Surman, M. K., and Farlow, J. O. 1997. Sauropods. Pp. 264290in Farlow, and Brett-Surman, 1997.Google Scholar
Miller, C. N. 1987. Land plants of the Northern Rocky Mountains before the appearance of flowering plants. Annals of Missouri Botanical Gardens 74:692706.CrossRefGoogle Scholar
Monterio, L. R. 1999. Functional and historical determinants of shape in the scapula of Xenarthran mammals: evolution of a complex morphological structure. Journal of Morphology 24:251263.3.0.CO;2-7>CrossRefGoogle Scholar
Ostrom, J. H., and McIntosh, J. S. 1966. Marsh's dinosaurs. Yale University Press, New Haven, Conn.Google Scholar
Parrish, J. M., and Stevens, K. A. 1998. Undoing the death pose: using computer imaging to restore the posture of articulated dinosaur skeletons. Journal of Vertebrate Paleontology 18(Suppl. to No. 3):69A.Google Scholar
Paul, G. S. 1997. Dinosaur models: the good, the bad, and using them to estimate the mass of dinosaurs; pp. 129154in Wolberg, D. L., Stump, E., and Rosenburg, G. D., eds. Dinofest International: proceedings of a symposium held at Arizona State University. Academy of Natural Sciences, Philadelphia.Google Scholar
Proctor, N. S., and Lynch, P. J. 1993. Manual of ornithology: avian structure and function. Yale University Press, New Haven, Conn.Google Scholar
Reese, A. M. 1915. The alligator and its allies. G. P. Putnam's Sons, New York.Google Scholar
Rohlf, F. J. 1993. Relative Warp Analysis and an example of its application to mosquito wings. Pp. 131159in Marcus, L. F., Bello, E., and Garcia-Valdescasas, A., eds. Contributions to morphometrics. CSIC, Madrid.Google Scholar
Rohlf, F. J. 1997a. TPSDIG (Thin Plate Splines Digitizing Software). http://life.bio.sunysb.edu/morph/Google Scholar
Rohlf, F. J. 1997b. Relative warps (TPSRW), Version 1.6. http://life.bio.sunysb.edu/morph/Google Scholar
Rohlf, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47:147158.CrossRefGoogle ScholarPubMed
Rohlf, F. J., and Slice, D. E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:4059.CrossRefGoogle Scholar
Romer, A. S. 1923a. Crocodilian pelvic muscles and their avian and reptilian homologues. Bulletin of the American Museum of Natural History 48:533552.Google Scholar
Romer, A. S. 1923b. The pelvic muscles of saurischian dinosaurs. Bulletin of the American Museum of Natural History 48:605617.Google Scholar
Romer, A. S. 1956. Osteology of the reptiles. University of Chicago Press, Chicago.Google Scholar
Romer, A. S. 1962. The vertebrate body, 3d ed.W. B. Saunders, Philadelphia.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.CrossRefGoogle ScholarPubMed
Shea, B. T. 1985. Bivariate and multivariate growth allometry: statistical and biological considerations. Journal of Zoology, London A 206:367390.CrossRefGoogle Scholar
Stevens, J. 1996. Applied multivariate statistics for the social sciences, 3d ed.Lawrence Earlbaum, Mahwah, NJ.Google Scholar
Stevens, K. A., and Parrish, J. M. 1997. Comparisons of neck form and function in the Diplodocidae. Journal of Vertebrate Paleontology 17(Suppl. to No. 3):79A.Google Scholar
Stevens, K. A., and Parrish, J. M. 1999. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science 284:798800.CrossRefGoogle ScholarPubMed
Strauss, R. E., Atanassov, M. N., and de Oliveira, J. Alves 2003. Evaluation of the principal-component and expectation-maximization methods for estimating missing data in morphometric studies. Journal of Vertebrate Paleontology 23:284296.CrossRefGoogle Scholar
Swiderski, D. L. 1993. Morphological evolution of the scapula in tree squirrels, chipmunks, and ground squirrels (Sciuridae): an analysis using thin-plate splines. Evolution 47:18541873.CrossRefGoogle ScholarPubMed
Thulborn, R. A. 1989. The gaits of dinosaurs. Pp. 3950in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, New York.Google Scholar
Upchurch, P. 1994. Manus claw function in sauropod dinosaurs. GAIA 10:161171.Google Scholar
Upchurch, P. 1995. The evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London B 349:365390.Google Scholar
Upchurch, P. 1998. The phylogenetic relationships of sauropod dinosaurs. Zoological Journal of the Linnean Society 124:43103.CrossRefGoogle Scholar
Upchurch, P., and Barrett, P. M. 2000. The evolution of sauropod feeding mechanisms. Pp. 79122in Sues, H.-D., ed. Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge University Press, New York.CrossRefGoogle Scholar
Walker, A. D. 1977. Evolution of the pelvis in birds and dinosaurs. Pp. 319358in Andrews, S. M., Miles, R. S., and Walker, A. D., eds. Problems in vertebrate evolution. Linnean Society Symposium Series 4.Google Scholar
Weishampel, D. B., and Chapman, R. E. 1990. Morphometric study of Plateosaurus from Trossingen (Baden-Wurtemberg, Federal Republic of Germany). Pp. 4351in Carpenter, and Currie, 1990.Google Scholar
Wilhite, R. 1999. Ontogenetic variation in the appendicular skeleton of the genus Camarasaurus. . Brigham Young University, Provo, Utah.Google Scholar
Wilhite, R. 2003. Biomechanical reconstruction of the appendicular skeleton in three North American Jurassic sauropods. Ph.D. dissertation. Louisiana State University, Baton Rouge.Google Scholar
Wilhite, R., and Curtice, B. 1998. Ontogenetic variation in sauropod dinosaurs. Journal of Vertebrate Paleontology 18(Suppl. to No. 3):86A.Google Scholar
Wilson, J. A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:217276.CrossRefGoogle Scholar
Wilson, J. A., and Sereno, P. C. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Journal of Vertebrate Paleontology Memoir 5:168.CrossRefGoogle Scholar
Witmer, L. M. 1995. The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils. Pp. 1933in Thomason, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, New York.Google Scholar
Zelditch, M. L., Fink, W. L., and Swiderski, D. L. 1995. Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Systematic Biology 44:179189.CrossRefGoogle Scholar
Zelditch, M. L., Fink, W. L., and Lundrigan, B. L. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf. Systematic Biology 47:159167.CrossRefGoogle Scholar