Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T18:33:45.088Z Has data issue: false hasContentIssue false

Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space

Published online by Cambridge University Press:  08 February 2016

W. Bruce Saunders
Affiliation:
Department of Geology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
Andrew R. H. Swan
Affiliation:
Department of Geology, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.

Abstract

Morphologic analysis of 281 species of ammonoids from Great Britain, the North American mid-continent, and the South Urals, at eight successive levels within the Namurian Series (ca. 18 Myr duration), using bivariate plots and principal-components analysis, permits definition of morphologic diversity and identification of morphotypic patterns in time and space. Namurian ammonoids exhibit the same general range of shell geometry that characterizes ammonoids as a whole; there were few post-Namurian innovations in the basic geometry of planispiral ammonoids. Within this overall range of geometry, there are eight preferred morphotypes: two were phylogenetically monopolized by long-ranging forms; three were generalized and reoccur in successive horizons; two others were homeomorphically utilized at different times by different lineages; and one represents morphologic innovation followed by radiation. Such patterns seem to represent combined effects of function, phylogeny, and ecology. Synchronous variations in isolated successions suggest global controls such as eustatic sea-level fluctuations, whereas provincial differences in diversity may be attributable to paleogeographic and ecologic factors. We predict that the Namurian record of ammonoid morphologic diversity and change will be found to be distinctive and differentiable from earlier and later intervals.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, O. H., Sylvester-Bradley, P. C., and Wright, C. W. 1957. Treatise on Invertebrate Paleontology, Part L, Mollusca 4, Cephalopoda Ammonoidea. 490 pp. Geol. Soc. Am. and Univ. Kansas Press.Google Scholar
Barskov, I. 1979. Geometricheskaya forma rakovini iskopaeme cefalopod i ee biologicheskoe vnacnenie [Geometrical form of the shells of fossil cephalopods and its biological significance]. Abstr., pp. 1618. In: Osnovnye napravleniya primeneniya mathemati-cheskikh metodov v paleontologii [Basic directions in application of mathematical methods in paleontology] (In Russian.)Google Scholar
Bayer, U. and McGhee, G. R. Jr. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia. 17:116.CrossRefGoogle Scholar
Bisat, W. S. 1924. The Carboniferous goniatites of the north of England and their zones. Proc. Yorkshire Geol. Soc. 20:40124.CrossRefGoogle Scholar
Bisat, W. S. 1932. On some lower Sabdenian goniatites. Trans. Leeds Geol. Assoc. 5:2736.Google Scholar
Bogoslovskaya, M. F. 1982. Development of ammonoids in the Namurian-Kayalian. Pp. 101108. In: Ramsbottom, W. H. C., Saunders, W. B., and Owens, B., eds. Biostratigraphic Data for a Mid-Carboniferous Boundary. I.U.G.S. Subcomm. Carb. Strat.; Univ. Leeds.Google Scholar
Bogoslovsky, B. I. 1969. Devonskiye ammonoidei I. Agoniatitida. Trans. Akad. Nauk. S.S.S.R. Paleontol. Inst. 124:1341. (In Russian.)Google Scholar
Bogoslovsky, B. I. 1971. Devonskiye ammonoidei II. Goniatitida. Trans. Akad. Nauk. S.S.S.R. Paleontol. Inst. 127:1228. (In Russian.)Google Scholar
Bogoslovsky, B. I. 1978. Devonskiye ammonoidei III. Klymenida. Trans. Akad. Nauk. S.S.S.R. Paleontol. Inst. 191:1122. (In Russian.)Google Scholar
Boucot, A. J. and Gray, J. 1983. A Paleozoic Pangea. Science. 222:571581.CrossRefGoogle Scholar
Brenckle, P., Lane, H. R., Manger, W. L., and Saunders, W. B. 1977. The Mississippian-Pennsylvanian boundary as an intercontinental biostratigraphic datum. Newsl. Stratigr. 6:106116.CrossRefGoogle Scholar
Burgess, I. C. and Ramsbottom, W. H. C. 1970. A new goniatite horizon in the Hearne Beck Limestone (Namurian, E2) near Lovely Seat, upper Wensleydale. J. Earth Sci. 8:143147.Google Scholar
Chamberlain, J. A. Jr. 1981. Hydromechanical design of fossil cephalopods. Pp. 289336. In: House, M. R. and Senior, J. R., eds. The Ammonoidea. Syst. Assoc. Spec. vol. 18. Academic Press; London.Google Scholar
Dixon, W. J. 1981. BMDP Statistical Software. 726 pp. Univ. Calif. Press; Berkeley, Los Angeles, London.Google Scholar
Drahovzal, J. A. and Quinn, J. H. 1972. A new Gomantes species from the Chesterian of Arkansas. J. Paleontol. 46:581590.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper; San Francisco.Google Scholar
Feng-qing, Y. 1978. On the lower and middle Carboniferous subdivisions and ammonites of western Guizhou. Prof. Papers Strat. Paleontol., Editorial Committee of Professional Papers of Stratigraphy and Paleontology, Chinese Academy of Geological Sciences. 5:143200, pls. 39-46. (In Chinese.)Google Scholar
Furnish, W. M., Quinn, J. H., and McCaleb, J. A. 1964. The Upper Mississippian ammonoid Delepinoceras in North America. Palaeontology. 7:173180.Google Scholar
Gordon, M. Jr. 1965. Carboniferous cephalopods of Arkansas. U.S. Geol. Surv. Prof. Paper. 460:1322.Google Scholar
Gordon, M. Jr. 1969. An early Reticuloceras Zone fauna from the Hale Formation in northwestern Arkansas. U.S. Geol. Surv. Prof. Paper. 613:119.Google Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R. 1982. A Geologic Time Scale. 131 pp. Cambridge Univ. Press; Cambridge, London, N.Y., New Rochelle, Melbourne, Sydney.Google Scholar
Hodson, F. and Ramsbottom, W. H. C. 1973. The distribution of Carboniferous goniatite faunas in relation to suggested continental reconstructions for the period. Pp. 321329. In: Hughes, N. F., ed. Organisms and Continents through Time. Spec. Pap. Palaeontol. 12. Palaeontol. Assoc.; London.Google Scholar
Hudson, R. G. S. 1946. The Namurian goniatites Cravenoceratoides bisati Hudson and Ct. lirifer n. sp. Proc. Yorkshire Geol. Soc. 25:375386.CrossRefGoogle Scholar
Irving, E. 1977. Drift of the major continental blocks since the Devonian. Nature. 270:304309.CrossRefGoogle Scholar
Kuzina, L. F. 1980. Saurskie ammonoidei. Trans. Akad. Nauk. S.S.S.R. Paleontol. Inst. 181:1108. (In Russian.)Google Scholar
Lane, H. R. and Baesmann, J. F. 1982. A mid-Carboniferous boundary based on conodonts and revised inercontinental correlations. Pp. 621. In: Ramsbottom, W. H. C., Saunders, W. B., and Owens, B., eds. Biostratigraphic Data for a Mid-Carboniferous Boundary. I.U.G.S. Subcomm. Carb. Strat.; Univ. Leeds.Google Scholar
Manger, W. L. and Pareyn, C. 1979. New Carboniferous dimorphoceratid ammonoids from Algeria and Arkansas. J. Paleontol. 53:657665.Google Scholar
Manger, W. L. and Quinn, J. H. 1972. Carboniferous dimorphoceratid ammonoids from northern Arkansas. J. Paleontol. 46:303314.Google Scholar
Manger, W. L. and Saunders, W. B. 1980. Lower Pennsylvanian (Morrowan) ammonoids from the North American Midcontinent. Mem. Paleontol. Soc. 10:156. (J. Paleontol. 54:supp.)Google Scholar
Manger, W. L. and Saunders, W. B. 1982. An ammonoidbased middle Carboniferous boundary. Pp. 95100. In: Ramsbottom, W. H. C., Saunders, W. B., and Owens, B., eds. Biostratigraphic Data for a Mid-Carboniferous Boundary, I.U.G.S. Subcomm. Carb. Strat.; Univ. Leeds.Google Scholar
McCaleb, J. A., Quinn, J. H., and Furnish, W. M. 1964. The ammonoid family Girtyoceratidae in the southern Midcontinent. Okla. Geol. Surv. Circ. 67:141.Google Scholar
Moore, E. W. J. 1939. The goniatite genus Dimorphoceras and its development in the British Carboniferous: Proc. Yorkshire Geol. Soc. 24:103128.CrossRefGoogle Scholar
Moore, E. W. J. 1946. The Carboniferous goniatite genera Girtyoceras and Eumorphoceras. Proc. Yorkshire Geol. Soc. 25:387445.CrossRefGoogle Scholar
Quinn, J. H. 1965. Reevaluation of Pygmaeoceras. Okla. Geol. Notes. 25:228235.Google Scholar
Quinn, J. H. and Saunders, W. B. 1968. The ammonoids Hudsonoceras and Baschkirites in the Morrowan Series of Arkansas. J. Paleontol. 42:397402.Google Scholar
Ramsbottom, W. H. C. 1977. Major cycles of transgression and regression (mesothems) in the Namurian. Proc. Yorkshire Geol. Soc. 41:261291.CrossRefGoogle Scholar
Ramsbottom, W. H. C. 1978a. Carboniferous. Pp. 146183. In: McKerrow, W. S., ed. The Ecology of Fossils. MIT Press; Cambridge, Mass.Google Scholar
Ramsbottom, W. H. C. 1978b. Namurian mesothems in South Wales and northern France. J. Geol. Soc. London. 135:307311.CrossRefGoogle Scholar
Ramsbottom, W. H. C. 1979. Rates of transgression in the Carboniferous of NW Europe. J. Geol. Soc. London. 136:147153.CrossRefGoogle Scholar
Ramsbottom, W. H. C. 1981. Eustatic control in Carboniferous ammonoid biostratigraphy. Pp. 369388. In: House, M. R. and Senior, J. R., eds. The Ammonoidea. Syst. Assoc. Spec. Vol. 18. Academic Press; London.Google Scholar
Ramsbottom, W. H. C., Rhys, G. H., and Smith, E. G. 1962. Boreholes in the Carboniferous of the Ashover district, Derbyshire. Bull. Geol. Surv. Great Britain. 19:75168.Google Scholar
Ramsbottom, W. H. C., Saunders, W. B., and Owens, B., eds. 1982. Biotratigraphic data for a Mid-Carboniferous Boundary. 156 pp. I.U.G.S. Subcomm. Carb. Strat.; Univ. Leeds.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. J. Paleontol. 41:4365.Google Scholar
Ross, C. A. and Ross, J. R. P. 1981. Biogeographical influences on late Paleozoic faunal distributions. Pp. 199212. In: Larwood, G. P. and Nielsen, C., eds. Recent and Fossil Bryozoa. Olsen & Olsen; Fredenborg.Google Scholar
Ruzhencev, V. E. 1965. Principal ammonoid assemblages of the Carboniferous Period. Am. Geol. Inst. Transl. in Internat. Geol. Rev. 8:4859.Google Scholar
Ruzhencev, V. E. and Bogoslovskaya, M. F. 1969. Revision of the family Dimorphoceratidae. Am. Geol. Inst. Transl., Paleontol. J. 1969:4356.Google Scholar
Ruzhencev, V. E. and Bogoslovskaya, M. F. 1971a. Namyurski etap y evolyutsii ammonoidei. Rannenamyurskiye ammonoidei. Trans. Akad. Nauk S.S.S.R. Paleontol. Inst. 133:1382. [Namurian time in ammonoid evolution. Early Namurian ammonoids.] (In Russian, translation available from W. B. Saunders.)Google Scholar
Ruzhencev, V. E. and Bogoslovskaya, M. F. 1971b. The ammonoid family Homoceratidae. Am. Geol. Inst. Transl., Paleontol. J. 1971:434450.Google Scholar
Ruzhencev, V. E. and Bogoslovskaya, M. F. 1975. The family Reticuloceratidae and related taxa. Am. Geol. Inst. Transl., Paleontol. J. 1975:4459.Google Scholar
Ruzhencev, V. E. and Bogoslovskaya, M. F. 1978. Namyurski etap y evolyutsii ammonoidei. Pozdnenamyurskiye ammonoidei. Trans. Akad. Nauk. S.S.S.R. Paleontol. Inst. 167:1336. [Namurian time in ammonoid evolution. Late Namurian ammonoids.] (In Russian, translation available from W. B. Saunders.)Google Scholar
Saunders, W. B. 1964. Eogonioloboceras in North America. Okla. Geol. Notes. 24:289293.Google Scholar
Saunders, W. B. 1973. Upper Mississippian Ammonoids from Arkansas and Oklahoma. Geol. Soc. Am. Spec. Pap. 145:1110.Google Scholar
Saunders, W. B., Manger, W. L., and Gordon, M. Jr. 1977. Upper Mississippian and Lower and Middle Pennsylvanian ammonoid biostratigraphy of northern Arkansas. Pp. 117137. In: Sutherland, P. K. and Manger, W. L., eds. Mississippian-Pennsylvanian Boundary in Northeastern Oklahoma and Northwestern Arkansas. Okla. Geol. Surv. Guidebook 18. Univ. Okla. Press; Norman.Google Scholar
Saunders, W. B., Ramsbottom, W. H. C., and Manger, W. L. 1979. Mesothemic cyclicity in the mid-Carboniferous of the Ozark shelf region? Geology. 7:293296.2.0.CO;2>CrossRefGoogle Scholar
Schmidt, H. 1925. Die carbonischen Goniatiten Deutschlands. Preuss Geol. Landesanstalt, Jb. 1924. 44:489609.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van der Voo, R., and Ziegler, A. M. 1979. Paleozoic base maps. J. Geol. 87:217277.CrossRefGoogle Scholar
Smith, A. G., Briden, J. C., and Drewry, G. E. 1973. Phanerozoic world maps. Pp. 142. In: Hughes, N. F., ed. Organisms and Continents through Time. Spec. Pap. Palaeontol. 12. Palaeontol. Assoc.; London.Google Scholar
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical Taxonomy. 573 pp. W. H. Freeman; San Francisco.Google Scholar
Stehli, F. G. 1968. Taxonomic diversity gradients in pole location: the Recent model. Pp. 163227. In: Drake, E. T., ed. Evolution and the Environment. Yale Univ. Press; New Haven, London.Google Scholar
Swan, A. R. H. 1984. A revision of some Silesian goniatites using cluster analysis. Ph.D. dissertation. Univ. Leeds. 1314.Google Scholar
Ward, P. D. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology. 6:3243.CrossRefGoogle Scholar
Yiping, R. 1981. Carboniferous ammonoid faunas from Qixu in Nandan of Guangxi. Mem. Nanjing Inst. Geol. Palaeontol., Acad. Sin. 15:153227. (In Chinese.)Google Scholar