Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T08:50:46.893Z Has data issue: false hasContentIssue false

Morphological evolution of the murine rodent Paraethomys in response to climatic variations (Mio-Pleistocene of North Africa)

Published online by Cambridge University Press:  08 April 2016

Sabrina Renaud
Affiliation:
Institut des Sciences de l'Evolution, UMR 5554 CNRS, CC064, Université Montpellier II, F-34095 Montpellier Cedex 05, France
Mouloud Benammi
Affiliation:
Institut des Sciences de l'Evolution, UMR 5554 CNRS, CC064, Université Montpellier II, F-34095 Montpellier Cedex 05, France
Jean-Jacques Jaeger
Affiliation:
Institut des Sciences de l'Evolution, UMR 5554 CNRS, CC064, Université Montpellier II, F-34095 Montpellier Cedex 05, France

Abstract

The North African murine rodent Paraethomys evolved as an anagenetic lineage from the late Miocene until its extinction in the late—middle Pleistocene. A Fourier analysis of the outlines of the first upper and lower molars of this rodent was used to quantify the evolutionary patterns of this lineage and to compare evolutionary patterns to the climatic record. Morphological evolution and long-term environmental variations are strongly correlated. A change in molar shape, which may be related to the development of a more grass-eating diet, corresponds to the global cooling beginning around 3 Ma and the subsequent increase in aridity in North Africa. Concurrently, size increased, which may be related to increased masticatory efficiency or to metabolic adaptation to the cooler environmental conditions according to Bergmann's rule. This adaptive response to changing environmental conditions corresponds to an acceleration of evolutionary rates in the lineage. The modalities of the evolutionary response in size and shape are probably controlled by intrinsic factors such as different genetic determinisms for both characters.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Backman, J. 1979. Pliocene biostratigraphy of DSDP sites 111 and 116 from the North Atlantic Ocean and age of Northern Hemisphere glaciation. Stockholm Contributions to Geology 33:115137.Google Scholar
Benammi, M., Orth, B., Vianey-Liaud, M., Chaimane, Y., Suteethorn, V., Feraud, G., Hernandez, J., and Jaeger, J.-J. 1995. Micromammifères et biochronologie des formations néogènes du flanc sud du Haut-Atlas Marocain: implications biogéographiques, stratigraphiques et tectoniques. Africa Geoscience Review 2:279310.Google Scholar
Benammi, M., Calvo, M., Prévot, M., and Jaeger, J.-J. 1996. Magnetostratigraphy and paleontology of Aït Kandoula Basin (High Atlas, Morocco) and the African-European late Miocene terrestrial faunal exchanges. Earth and Planetary Science Letters 145:1529.Google Scholar
Biberson, P., and Jodot, P. 1962. Faunes de mollusques continentaux du Pléistocène de Casablanca (Maroc). Notes du Service Géologique du Maroc 25(185):115170.Google Scholar
Bown, T. M., Holroyd, P. A., and Rose, K. D. 1994. Mammal extinctions, body size, and paleotemperature. Proceedings of the National Academy of Sciences USA 91:1040310406.Google Scholar
Cande, S. C., and Kent, D. V. 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100(B4):60936095.Google Scholar
Choubert, G., Charlot, R., Faure-Muret, A., Hottinger, L., Marçais, J., Tisserant, D., and Vidal, P. 1968. Note préliminaire sur le volcanisme messinien “Pontien” au Maroc. Comptes Rendus de l'Académie des Sciences Paris, série D, 266:197199.Google Scholar
Coiffait, B. 1991. Contribution des rongeurs du Néogène d'Afrique à la biostratigraphie d'Afrique du Nord Occidentale. Thèse, Université Nancy I, Nancy, France.Google Scholar
Denys, C. 1994. Diet and dental morphology of two coexisting Aethomys species (Rodentia, Mammalia) in Mozambique. Implications for diet reconstruction in related extinct species from South Africa. Acta Theriologica 39:357364.Google Scholar
Diester-Haas, L., and Chamley, H. 1978. Neogene paleoenvironment off Northwest Africa based on sediments from DSDP Leg 14. Journal of Sedimentary Petrology 48:879896.Google Scholar
Dieterlen, F. 1967. Ökologische Populationsstudien an Muriden des Kivugebietes (Congo). Teil I. Zoologische Jarbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 94:369426.Google Scholar
Ehrlich, R., and Weinberg, B. 1970. An exact method for characterization of grain shape. Journal of Sedimentary Petrology 40:205212.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.CrossRefGoogle Scholar
Fraissinet, C. 1989. Les étapes de la structuration récente du Haut-Atlas calcaire (Maroc). Analyse des rapports entre raccourcissement et surrection au sein d'une chaîne continentale. Thèse de 3e cycle, Université Paris XI, Paris.Google Scholar
Geraards, D. 1998. Biogeography and circum-mediterranean Miocene–Pliocene rodents; a revision using factor analysis and parsimony analysis of endemicity. Palaeogeography, Palaeoclimatology, Palaeoecology 137:273288.CrossRefGoogle Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science 222:159161.Google Scholar
Gingerich, P. D. 1984. Punctuated equilibria—Where is the evidence? Systematic Zoology 33:335338.Google Scholar
Gingerich, P. D. 1993. Quantification and comparison of evolutionary rates. American Journal of Science 293A:453478.Google Scholar
Gould, S. J., and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.Google Scholar
Gould, S. J., and Eldredge, N. 1993. Punctuated equilibrium comes of age. Nature 366:223227.Google Scholar
Haldane, J. B.S. 1949. Suggestions as to quantitative measurements of rates of evolution. Evolution 3:5156.CrossRefGoogle ScholarPubMed
Hodell, D. A., and Kennett, J. P. 1986. Late Miocene–early Pliocene stratigraphy and paleoceanography of the South Atlantic and southwest Pacific Oceans: a synthesis. Paleoceanography 1:285312.Google Scholar
Jaeger, J.-J. 1970. Découverte au Jebel Irhoud des premières faunes de rongeurs du Pléistocène inférieur et moyen du Maroc. Comptes Rendus de l'Académie des Sciences Paris 270:920923.Google Scholar
Jaeger, J.-J. 1977. Les rongeurs du Miocène moyen et supérieur du Maghreb. Paleovertebrata Montpellier 8:1166.Google Scholar
Jaeger, J.-J., Michaux, J., and Thaler, L. 1975. Présence d'un rongeur muridé nouveau, Paraethomys miocaenicus nov. sp., dans le Turolien supérieur du Maroc et d'Espagne. Implications paléogéographiques. Comptes Rendus de l'Académie des Sciences Paris, série D 280:16731676.Google Scholar
Keigwin, L. D. 1982. Stable isotope stratigraphy and paleoceanography of site 502 and 503. Initial reports of the Deep Sea Drilling Project 68:445453.Google Scholar
Laville, E. 1975. Tectonique et microtectonique d'une partie du versant Sud du Haut-Atlas Marocain (Boutonnière de Skoura, nappe de Toundout). Thèse de 3e cycle, Université Montpellier II, Montpellier, France.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléocene (Eocène supérieur et Oligocène) d'Europe occidentale: structures, milieu et évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 16:1110.Google Scholar
MacFadden, B. J., and Shockey, B. J. 1997. Ancient feeding ecology and niche differentiation in Pleistocene mammalian herbivores from Tarija, Bolivia; morphological and isotopic evidence. Paleobiology 23:77100.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Misonne, X. 1969. African and Indo-European Muridae; evolutionary trends. Musée Royal de l'Afrique Centrale, Tervuren, Belgique. Annales, série Sciences Zoologiques.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary isotope synthesis, sea level history and continental margin erosion. Paleoceanography 2:119.Google Scholar
Nevo, E. 1989. Natural selection of body size differentiation in the spiny mice, Acomys. Zeitschrift für Säugetierkunde 54:8199.Google Scholar
Parsons, P. A. 1993. Developmental variability and the limits of adaptation: interactions with stress. Genetica 89:245253.CrossRefGoogle Scholar
Renaud, S. 1997. Modalités de l'évolution morphologique: analyse morphométrique d'une spécialisation dentaire chez les Murinés, la stéphanodontie. Thèse de Doctorat, Université Montpellier II, Montpellier, France.Google Scholar
Renaud, S. 1999. Size and shape variability in relation to species differences and climatic gradients in the African rodent Oenomys. Journal of Biogeography (in press).Google Scholar
Renaud, S., Michaux, J., Jaeger, J.-J., and Auffray, J.-C. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology 22:255265.CrossRefGoogle Scholar
Robert, C., and Chamley, H. 1987. Cenozoic evolution of continental humidity and palaeoenvironment, deduced from the kaolinite content of oceanic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 60:171187.Google Scholar
Rohlf, F. J., and Archie, J. W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33:302317.CrossRefGoogle Scholar
Schaub, S. 1938. Tertiäre und Quartäre Murinae. Abhandlungen der Schweizerischen Palaeontologischen Gesellschaft 61:139.Google Scholar
Seber, D., Vallve, M., Sandvol, E., Steer, D., and Barazangi, M. 1997. Middle East tectonics: applications of Geographic Information Systems (GIS). GSA Today 7(2):15.Google Scholar
Shackleton, N. J., and Opdyke, N. D. 1977. Oxygen isotope and paleomagnetic evidence for early northern hemisphere glaciation. Nature 270:216219.Google Scholar
Sheldon, P. R. 1993. Making sense of microevolutionary patterns. Pp. 1931in Lees, D. R. and Edwards, D., eds. Evolutionary patterns and processes (Linnean Society Symposium). Academic Press, London.Google Scholar
Sheldon, P. R. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127:209227.Google Scholar
Suc, J.-P. 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429432.Google Scholar
Suc, J.-P., and Zagwijn, W. H. 1983. Plio-Pleistocene correlations between the northwestern Mediterranean region and northwestern Europe according to recent biostratigraphic and paleoclimatic data. Boreas 12:153166.CrossRefGoogle Scholar
Thunell, R., Rio, D., Sprovieri, R., and Vergnaud-Grazzini, C. 1991. An overview of the post-Messinian paleoenvironmental history of the western Mediterranean. Paleoceanography 6:143164.Google Scholar
Vergnaud-Grazzini, C., Saliege, J., Vrrutiaguer, M., and Iannace, A. 1990. Oxygen and carbon isotope carbon stratigraphy of ODP Holes 654, 653A, 652 and 650: the Plio-Pleistocene boundary glacial history recorded in the Tyrrhenian basin (west Mediterranean). Scientific results of the Ocean Drilling Program 107:361386.Google Scholar
Vrba, E. S. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy 73:128.Google Scholar
Vrba, E. S. 1995. On the connections between paleoclimate and evolution. Pp. 2445in Vrba, E. S. et al., eds. Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.Google Scholar
Whiting, M. F., and Wheeler, W. C. 1994. Insect homeotic transformation. Nature 368:696.Google Scholar