Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T22:31:27.281Z Has data issue: false hasContentIssue false

Morphological evolution of the bivalve Ptychomya through the Lower Cretaceous of Argentina

Published online by Cambridge University Press:  24 January 2018

Pablo S. Milla Carmona
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN, UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina. E-mail: [email protected]. [email protected]
Darío G. Lazo
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN, UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina. E-mail: [email protected]. [email protected]
Ignacio M. Soto
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, UBA- CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina. E-mail: [email protected].

Abstract

The complex morphological evolution of the bivalve Ptychomya throughout the well-studied Agrio Formation in the Neuquén Basin (west-central Argentina, lower/upper Valanginian–lowest Barremian) constitutes an ideal opportunity to study evolutionary patterns and processes occurring at geological timescales. Ptychomya is represented in this unit by four species, the morphological variation of which needs to be temporally assessed to obtain a thorough picture of the evolution of the group. Here we use geometric morphometrics to measure variation in shell outline, ribbing pattern, and shell size in these species. We bracket the ages of our samples using a combination of ammonoid biostratigraphy and absolute ages and study the anagenetic pattern of evolution of each trait by means of paleontological time-series analysis and change tracking. We find that evolution in Ptychomya is mostly speciational, as the majority of traits show stasis, with the exceptions of shell size in P. coihuicoensis and shell outline in P. windhauseni, which seem to evolve directionally toward larger and higher shells, respectively. Ptychomya displays changes in its average morphology and disparity, which are the result of a mixture of taxonomic turnover and mosaic evolution of traits. Pulses of speciation would have been triggered by ecological opportunity, as they occur during the recovery of shallow-burrowing bivalve faunas after dysoxic events affecting the basin. On the other hand, the presence of directional patterns of evolution in P. coihuicoensis and P. windhauseni seems to be the result of a general shallowing-upward trend observed in the basin during the upper Hauterivian–lowest Barremian, as opposed to the cyclical paleoenvironmental stability inferred for the early/late Valanginian–early Hauterivian, which would have prompted stasis in P. koeneni and P. esbelta.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, D. C., and Collyer, M. L.. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:11431154.Google Scholar
Adams, D. C., and Otárola-Castillo, E.. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4:393399.Google Scholar
Álvarez, J. M., and Pérez, D. E.. 2016. Gerontic intraspecific variation in the Antarctic bivalve Retrotapes antarcticus . Ameghiniana 53:485494.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F.. 2012. Lower Cretaceous ammonites from the Neuquen Basin, Argentina: a new heteromorph fauna from the uppermost Agrio Formation. Cretaceous Research 35:208216.Google Scholar
Aguirre-Urreta, M. B., Mourgues, F. A., Rawson, P. F., Bulot, L. G., and Jaillard, E.. 2007. The Lower Cretaceous Chañnarcillo and Neuquen Andean basins: ammonoid biostratigraphy and correlations. Geological Journal 42:143173.Google Scholar
Aguirre-Urreta, M. B., Price, G. D., Ruffell, A. H., Lazo, D. G., Kalin, R. M., Ogle, N., and Rawson, P. F.. 2008. Southern Hemisphere Early Cretaceous (Valanginian–early Barremian) carbon and oxygen isotope curves from the Neuquén Basin, Argentina. Cretaceous Research 29:8799.Google Scholar
Aguirre-Urreta, M. B., Lazo, D. G., Griffin, M., Vennari, V., Parras, A. M., Cataldo, C., Garberoglio, R., and Luci, L.. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. Relatorio del XVIII Congreso Geológico Argentino, 465488.Google Scholar
Aguirre-Urreta, M. B., Lescano, M., Schmitz, M. D., Tunik, M., Concheyro, A., Rawson, P. F., and Ramos, V. A.. 2015. Filling the gap: new precise Early Cretaceous radioisotopic ages from the Andes. Geological Magazine 152:557564.Google Scholar
Archuby, F. M., Wilmsen, M., and Leanza, H. A.. 2011. Integrated stratigraphy of the upper Hauterivian to lower Barremian Agua de la Mula Member of the Agrio Formation, Neuquen Basin, Argentina. Acta Geologica Polonica 61:126.Google Scholar
Blomberg, S. P., Garland, T., and Ives, A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.Google Scholar
Bokma, F. 2002. Detection of punctuated equilibrium from molecular phylogenies. Journal of Evolutionary Biology 15:10481056.Google Scholar
Bonhomme, V., Picq, S., Gaucherel, C., and Claude, J.. 2014. Momocs: outline analysis using R. Journal of Statistical Software 56:124.Google Scholar
Butler, M. A., and King, A. A.. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. American Naturalist 164:683695.Google Scholar
Cataldo, C. S., and Lazo, D. G.. 2016. Taxonomy and paleoecology of a new gastropod fauna from dysoxic outer ramp facies of the Lower Cretaceous Agrio Formation, Neuquén Basin, Argentina. Cretaceous Research 57:165189.Google Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.Google Scholar
Eldredge, N., and Gould, S. J.. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp 83115. in T. Schopf, ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Gould, S. J. 2002. The structure of evolutionary theory. Harvard University Press, Cambridge.Google Scholar
Gould, S. J., and Eldredge, N.. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.Google Scholar
Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika 40:3351.Google Scholar
Guler, M. V., Lazo, D. G., Pazos, P. J., Borel, C. M., Ottone, E. G., Tyson, R. V., Cesaretti, N., and Aguirre-Urreta, M. B.. 2013. Palynofacies analysis and palynology of the Agua de la Mula Member (Agrio Formation) in a sequence stratigraphy framework, Lower Cretaceous, Neuquén Basin, Argentina. Cretaceous Research 41:6581.Google Scholar
Hannisdal, B. 2007. Inferring phenotypic evolution in the fossil record by Bayesian inversion. Paleobiology 33:98115.Google Scholar
Harmon, L. J., Schulte, J. A. II, Larson, A., and Losos, J. B.. 2003. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301:961963.CrossRefGoogle ScholarPubMed
Harmon, L. J., Losos, J. B., Davies, J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., Purvis, A., Ricklefs, R. E., Schluter, D., Schulte, J. A. II, Seehausen, O., Sidlauskas, B. L., Torres-Carvajal, O., Weir, J. T., and Mooers, A. Ø.. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:23852396.Google Scholar
Hopkins, M. J., and Lidgard, S.. 2012. Evolutionary mode routinely varies among morphological traits within fossil species lineages. Proceedings of the National Academy of Sciences USA 109:2052020525.CrossRefGoogle ScholarPubMed
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D.. 2005. The Neuquén Basin: an overview. In G. D Veiga, L. A. Spalletti, J. A. Howell, and E. Schwarz, eds. The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publications. 252:114.Google Scholar
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.Google Scholar
Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences USA 104:1840418408.Google Scholar
Hunt, G. 2008. Evolutionary patterns within fossil lineages: model-based assessment of modes, rates, punctuations and process. In From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontological Society Papers 14:117131.Google Scholar
Hunt, G. 2015. paleoTS: analyze paleontological time-series. R package, Version 0.5-1. https://CRAN.R-project.org/package=paleoTS.Google Scholar
Hunt, G., Bell, M. A., and Travis, M. P.. 2008. Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evolution 62:700710.Google Scholar
Hunt, G., Hopkins, M. J., and Lidgard, S.. 2015. Simple versus complex models of trait evolution and stasis as a response to environmental change. Proceedings of the National Academy of Sciences USA 112:48854890.Google Scholar
Jackson, J. B., and Cheetham, A. H.. 1999. Tempo and mode of speciation in the sea. Trends in Ecology and Evolution 14:7277.Google Scholar
Kucera, M., and Malmgren, B. A.. 1998. Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera. Paleobiology 24:4963.Google Scholar
Kuhl, F. P., and Giardina, C. R.. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18:236258.Google Scholar
Lazo, D. G. 2006. Análisis tafonómico e inferencia del grado de mezcla temporal y espacial de la macrofauna del Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de cuenca Neuquina, Argentina. Ameghiniana 43:311326.Google Scholar
Lazo, D. G. 2007a. Análisis de biofacies y cambios relativos del nivel del mar en el Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de la cuenca Neuquina, Argentina. Ameghiniana 44:7389.Google Scholar
Lazo, D. G. 2007b. Early Cretaceous bivalves from the Neuquén Basin, west-central Argentina: notes on taxonomy, palaeobiogeography and palaeoecology. Geological Journal 42:127142.Google Scholar
Lazo, D. G., and Luci, L.. 2013. Revision of Valanginian Steinmanellinae bivalves from the Neuquén basin, west-central Argentina, and their biostratigraphic implications. Cretaceous Research 45:6075.Google Scholar
Lazo, D. G., Aguirre-Urreta, M. B., Price, G. D., Rawson, P. F., Ruffell, A. H., and Ogle, N.. 2008. Palaeosalinity variations in the Early Cretaceous of the Neuquén Basin, Argentina: evidence from oxygen isotopes and palaeoecological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 260:477493.Google Scholar
Legarreta, L., and Gulisano, C. A.. 1989. Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico Superior–Terciario Inferior, Argentina). In G. A. Chebli, and L. A. Spalletti, eds. Cuencas sedimentarias argentinas, Simposio de cuencas sedimentarias argentinas. X Congreso Geológico Argentino, Tucuman. 221243.Google Scholar
Losos, J. B., and Mahler, D. L.. 2010. Adaptive radiation: the interaction of ecological opportunity, adaptation, and speciation. Pp 381420. in M. A. Bell, D. J. Futuyma, W. F. Eanes, and J. S. Levinton, eds. Evolution since Darwin: the first 150 years. Sinauer, Sunderland, Mass.Google Scholar
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape visualization and analysis. Paleobiology 25:107138.Google Scholar
MacLeod, N. 2009. Form and shape models. Palaeontological Association Newsletter 72:1427.Google Scholar
MacLeod, N. 2013. Landmarks and semilandmarks: differences without meaning and meaning without difference. Palaeontological Association Newsletter 82:3243.Google Scholar
Milla Carmona, P. S., Lazo, D. G., and Soto, I. M.. 2016. Giving taxonomic significance to the morphological variability in the bivalve Ptychomya Agassiz. Palaeontology 59:139154.Google Scholar
Milla Carmona, P. S., Lazo, D. G., and Soto, I. M.. 2017. Taxonomy of the bivalve Ptychomya in the Lower Cretaceous of the Neuquén Basin (west-central Argentina). Papers in Palaeontology 3:219240.Google Scholar
O’Meara, B. C., Ané, C., Sanderson, M. J., and Wainwright, P. C.. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922933.Google Scholar
Pagel, M., Venditti, C., and Meade, A.. 2006. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science 314:119121.Google Scholar
Payne, L. P., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Tessa, M. H., and Skotheim, J. M.. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:29292939.Google Scholar
Pazos, P. J., Lazo, D. G., Tunik, M. A., Marsicano, C. A., Fernandez, D. E., and Aguirre-Urreta, M. B.. 2012. Paleoenvironmetal framework of dinosaur tracksites and other ichnofossils in Early Cretaceous mixed siliciclastic-carbonate deposits in the Neuquen Basin, northern Patagonia (Argentina). Gondwana Research 22:11251140.Google Scholar
R Core Team 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org.Google Scholar
Revell, L. J., Johnson, M. A., Schulte, J. A. II, Kolbe, J. J., and Losos, J. B.. 2007. A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution 61:28982912.Google Scholar
Rohlf, F. J. 2016. tpsDig, Version 2.26. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, N.Y. http://life.bio.sunysb.edu/morph.Google Scholar
Rohlf., F. J., and Slice, D. E.. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:4059.Google Scholar
Sheldon, P. R. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127:209227.Google Scholar
Sidlauskas, B. 2008. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62:31353156.Google Scholar
Spalletti, L. A., Poiré, D. G., Schwarz, E., and Veiga, G. D.. 2001. Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonate–siliciclastic ramp: Neuquén Basin, Argentina. Journal of South American Earth Sciences 14:609624.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125:1296.Google Scholar
Tyson, R. V., Esherwood, P., and Pattison, K. A.. 2005. Organic facies variations in the Valanginian–mid-Hauterivian interval of the Agrio Formation (Chos Malal area, Neuquén Argentina): local significance and global context. In L. A. Spalletti, J. A. Howell, and E. Schwarz, eds. The Neuquén Basin, Argentina: a case of study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publications. 252:251266.Google Scholar
Veiga, G. D., Spalletti, L. S., and Flint, S.. 2002. Aeolian/fluvial interactions and high resolution sequence stratigraphy of a non-marine lowstand wedge: the Avilé Member of the Agrio Formation (Lower Cretaceous), central Neuquén Basin, Argentina. Sedimentology 49:10011019.Google Scholar
Weaver, C. E. 1931. Paleontology of the Jurassic and Cretaceous of west-central Argentina. Memoirs of the University of Washington 1:1595.Google Scholar
Wellborn, G. A., and Langerhans, R. B.. 2015. Ecological opportunity and the adaptive diversification of lineages. Ecology and Evolution 5:176195.Google Scholar
Yoder, J. B., Clancey, E., Des Roches, S., Eastman, J. M., Gentry, L., Godsoe, W., Hagey, T. J., Jochimsen, D., Oswald, B. P., Robertson, J., Sarver, B. A. J., Schenks, J. J., Spear, S. F., and Harmon, L. J.. 2010. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology 23:15811596.Google Scholar