Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T22:04:02.821Z Has data issue: false hasContentIssue false

Morphological diversification of Ptychopariida (Trilobita) from the Marjumiid biomere (Middle and Upper Cambrian)

Published online by Cambridge University Press:  08 April 2016

Frederick A. Sundberg*
Affiliation:
Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007

Abstract

Ptychopariid trilobites from the Marjumiid biomere of Laurentia underwent a statistically significant morphological diversification that is concordant with proposed adaptive radiations of trilobites in each of the Cambrian biomeres. An analysis of a subset consisting of the biomere's most characteristic taxa, the Asaphiscacea, Raymondinacea, and Marjumiacea, also illustrates this morphological diversification. In detail, the total data set and subset show a limited range of morphologies near the base of the biomere and a large increase in range in the upper portion of the biomere.

Regional assemblages from the Appalachians, Great Basin, and Texas were also studied to determine if they too show the larger-scale macroevolutionary patterns of trilobites from Laurentia as a whole. The regional assemblages illustrate similar, but not identical, morphological diversifications, which are also similar to the overall Laurentian pattern. Subsets of the characteristic taxa also show this diversification. These results suggest that regional assemblages can be used to investigate these larger-scale macroevolutionary patterns.

Causal mechanisms for the diversification patterns are not clear. Potential mechanisms include: (1) endemic evolution of new morphologies in Laurentia; (2) migration of new morphologies, including intra- and inter-continental migrations; and (3) environmental controls over the distribution of morphologies. Likely causes for the morphological diversification and its similarity among regions probably include aspects of all three mechanisms.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. pp. 719746In Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press and Pacific Division, American Association for the Advancement of Science, Princeton, N.J.Google Scholar
Bond, G. C., Komina, M. A., Steckler, M. S., and Grotzinger, J. P. 1989. Role of thermal subsidence, flexure, and eustasy in the evolution of early Paleozoic passive-margin carbonate platforms. In Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds. Controls on carbonate platform and basin development. Society of Economic Paleontologists and Mineralogists Special Publication 44:3961.Google Scholar
Brady, M. J., and Koepnick, R. B. 1979. A Middle Cambrian platform-to-basin transition, House Range, west central Utah. Brigham Young University, Geological Studies 26:17.Google Scholar
Campbell, L. D. 1971. Occurrence of “Ogygopsis Shale” fauna in southeastern Pennsylvania. Journal of Paleontology 45:437440.Google Scholar
Cornish, F. G. 1975. Tidal flat facies in the Hickory Sandstone, Upper Cambrian of central Texas. Geological Society of America Abstracts with Programs 7:154.Google Scholar
Derby, J. R. 1965. Paleontology and stratigraphy of the Nolichucky Formation in southwest Virginia and northeast Tennessee. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg.Google Scholar
Eby, R. G. 1981. Early Late Cambrian trilobite faunas of the Big Horse Limestone and correlative units in central Utah and Nevada. Ph.D. dissertation. State University of New York, Stony Brook.Google Scholar
Eldredge, N. 1972. Systematics and evolution of Phacops rana (Green, 1882) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bulletin of the American Museum of Natural History 147:45114.Google Scholar
Flessa, K. W., and Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology 4:359366.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204.Google Scholar
Fritz, W. H. 1971. Geological setting of the Burgess Shale. Proceedings of the North American Paleontological Convention 2:11551170.Google Scholar
Hardy, M. C. 1985. Testing for adaptive radiation: the Ptychaspid (Trilobita) biomere of the Late Cambrian. pp. 379397in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Harrington, H. J., Henningsmoen, G., Howell, B. F., Jaanusson, V., Lochman-Balk, C., Moore, R. C., Poulsen, Chr., Rasetti, F., Richter, E., Richter, R., Schmidt, H., Sdzuy, K., Struve, W., St⊘rmer, Leif, Stubblefield, C. J., Tripp, R., Weller, J. M., and Whittington, H. B., eds. 1959. Trilobita. pp. 0380540in Arthropoda 1, Part O of R. C. Moore, ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kans.Google Scholar
Hood, K. C., and Robison, R. A. 1988. Trilobites and lithofacies relationships in the Holm Dal Formation (late Middle Cambrian), central North Greenland. Meddelelser om Gr⊘nland Geoscience 20:105112.Google Scholar
King, D. T. Jr., and Chafetz, H. S. 1983. Tidal-flat to shallow-shelf deposits in the Cap Mountain Limestone Member of the Riley Formation, Upper Cambrian of central Texas. Journal of Sedimentary Petrology 53:261273.Google Scholar
Kopaska-Merkel, D. C. 1983. Paleontology and depositional environments of the Whirlwind Formation (Middle Cambrian), west-central Utah. Ph.D. dissertation. University of Kansas, Lawrence.Google Scholar
Kopaska-Merkel, D. C. 1988. Depositional environments and stratigraphy of a Cambrian mixed carbonate/terrigenous platform deposit: west-central Utah, USA. Carbonates and Evaporates 2:133147.Google Scholar
Labandeira, C. C., and Hughes, N. C. 1994. Biometry of the Late Cambrian trilobite genus Dikelocephalus and its implications for trilobite systematics. Journal of Paleontology 68:492517.Google Scholar
Loch, J. D., Stitt, J. H., and Derby, J. R. 1993. Cambrian-Ordovician boundary interval extinctions: implications of revised trilobite and brachiopod data from Mount Wilson, Alberta, Canada. Journal of Paleontology 67:497517.Google Scholar
Lohmann, K. C. 1976. Lower Dresbachian (Upper Cambrian) platform to deep-shelf transition in eastern Nevada and western Utah: an evaluation through lithologic cycle correlation. In Robison, R. A. and Rowell, A. J., eds. Paleontology and depositional environments: Cambrian of western North America. Brigham Young University Geology Studies 23:139152.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1983a. Franconian trilobites of New York State. New York State Museum Memoir 23.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1983b. Trilobite biofacies of the Cambrian–Ordovician boundary interval in northern North America. Alcheringa 7:301319.Google Scholar
Markello, J. R., and Read, J. F. 1981. Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, southwest Virginia Appalachians. Sedimentology 28:573597.CrossRefGoogle Scholar
Markello, J. R., and Read, J. F. 1982. Upper Cambrian intrashelf basin, Nolichucky Formation, southwest Virginia Appalachians. American Association of Petroleum Geologists Bulletin 66:860878.Google Scholar
Oldroyd, J. D. 1973. Biostratigraphy of the Cambrian Glossopleura Zone, west-central Utah. . , Salt Lake City.Google Scholar
Öpik, A. A. 1967. The Mindyallan fauna of north-western Queensland. Bureau of Minerals Resources of Australia, Bulletin 74.Google Scholar
Osleger, D. 1991. Cyclostratigraphy of Late Cambrian carbonate sequences: an interbasinal comparison of the Cordilleran and Appalachian passive margins. pp. 801828In Cooper, J. D. and Stevens, C., eds. Paleozoic paleogeography of the western United States–II. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Palmer, A. R. 1954. The faunas of the Riley Formation in central Texas. Journal of Paleontology 28:709786.Google Scholar
Palmer, A. R. 1965. Biomere—a new kind of biostratigraphic unit. Journal of Paleontology 39:149153.Google Scholar
Palmer, A. R. 1979. Cambrian. Pp. A119A135In Robison, R. A. and Teichert, C., eds. Treatise on invertebrate paleontology, Part A, Introduction. Geological Society of America and University of Kansas, Boulder, Colo. and Lawrence, Kans.Google Scholar
Palmer, A. R. 1984. The biomere problem: evolution of an idea. Journal of Paleontology 58:599611.Google Scholar
Randolph, R. L. 1973. Paleontology of the Swasey Limestone, Drum Mountains, west-central Utah. . .Google Scholar
Rasetti, F. 1951. Middle Cambrian stratigraphy and faunas of the Canadian Rocky Mountains. Smithsonian Miscellaneous Collections 116:1277.Google Scholar
Rasetti, F. 1965. Upper Cambrian trilobite faunas of northeastern Tennessee. Smithsonian Miscellaneous Collections 148:1127.Google Scholar
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform: the Middle Cambrian House Range embayment. Geological Society of America Bulletin 97:10541069.Google Scholar
Robison, R. A. 1964. Late Middle Cambrian faunas from western Utah. Journal of Paleontology 38:510566.Google Scholar
Robison, R. A. 1971. Additional Middle Cambrian trilobites from the Wheeler Shale of Utah. Journal of Paleontology 45:796804.Google Scholar
Robison, R. A. 1976. Middle Cambrian trilobite biostratigraphy of the Great Basin. In Robison, R. A. and Rowell, A. J., eds. Paleontology and depositional environments: Cambrian of western North America. Brigham Young University Geology Studies 23:3950.Google Scholar
Robison, R. A. 1988. Trilobites of the Holm Dal Formation (late Middle Cambrian) central North Greenland. Meddelelser om Gr⊘nland Geoscience 20:23103.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Srinivasan, K., and Walker, K. R. 1993. Sequence stratigraphy of an intrashelf basin carbonate ramp to rimmed platform transition: Maryville Limestone (Middle Cambrian), southern Appalachians. Geological Society of America Bulletin 105:883896.Google Scholar
Stitt, J. H. 1975. Adaptive radiation, trilobite paleoecology, and extinction, Ptychaspid biomere, Late Cambrian of Oklahoma. Fossils and Strata 4:381390.Google Scholar
Sundberg, F. A. 1989. Biostratigraphy of the lower Conasauga Group, a preliminary report. Appalachian Basin Industrial Associates Spring Program, 1989, 15:166176.Google Scholar
Sundberg, F. A. 1990. Morphological diversification of the ptychopariid trilobites in the Marjumiid Biomere (Middle to Upper Cambrian). Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg.Google Scholar
Sundberg, F. A. 1991. Paleogeography of western Utah and eastern Nevada during the Ehmaniella Biochron (Middle Cambrian). pp. 387399In Cooper, J. D. and Stevens, C. H., eds. Paleozoic Paleogeography of the Western United States-II. Pacific Section Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Sundberg, F. A. 1994. Corynexochida and Ptychopariida (Trilobita, Arthropoda) of the Ehmaniella Biozone (Middle Cambrian), Utah and Nevada. Los Angeles County Museum of Natural History, Contributions in Science 446.Google Scholar
Taylor, M. E. 1977. Upper Cambrian of western North America: trilobite biofacies, environmental significance, and biostratigraphic implications. pp. 397425In Kauffman, E. G. and Hazel, J. E., eds. Concepts and methods of biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Penn.Google Scholar
Van Valen, L. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.Google Scholar
Vorwald, G. R. 1983. Paleontology and paleoecology of the upper Wheeler Formation (late Middle Cambrian), Drum Mountains, west-central Utah. . .Google Scholar
Westrop, S. R. 1988. Trilobite diversity patterns in an Upper Cambrian stage. Paleobiology 14:401409.Google Scholar
Westrop, S. R. 1990. Mass extinction in the Cambrian trilobite faunas of North America. In Mikulic, D. G., ed. Arthropod paleobiology. Short Courses in Paleontology 3:99115.Google Scholar
Westrop, S. R. 1992. Upper Cambrian (Marjuman-Steptoean) trilobites from the Port au Port Group, western Newfoundland. Journal of Paleontology 66:228255.Google Scholar
Westrop, S. R., and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology 13:8499.Google Scholar
White, W. W. III. 1973. Paleontology and depositional environments of the Cambrian Wheeler Formation, Drum Mountains, west-central Utah. . .Google Scholar