Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T11:19:32.424Z Has data issue: false hasContentIssue false

Morphological conservatism of the family Naticidae (Gastropoda) through time: potential causes and consequences

Published online by Cambridge University Press:  22 January 2021

Neha Sharma
Affiliation:
Department of Geology, Ballygunje Science College, University of Calcutta, 35, Ballygunje Circular Road, Kolkata, WB, India. Email: [email protected]
Subhronil Mondal*
Affiliation:
Department of Geology, Ballygunje Science College, University of Calcutta, 35, Ballygunje Circular Road, Kolkata, WB, India; and Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)Kolkata, Mohanpur, West Bengal741246, India. Email: [email protected]
Shiladri S. Das
Affiliation:
Geological Studies Unit (GSU), Indian Statistical Institute, Kolkata, 203, B.T. Road, Kolkata, WB, India. Email: [email protected], [email protected], [email protected]
Kanishka Bose
Affiliation:
Geological Studies Unit (GSU), Indian Statistical Institute, Kolkata, 203, B.T. Road, Kolkata, WB, India. Email: [email protected], [email protected], [email protected]
Sandip Saha
Affiliation:
Geological Studies Unit (GSU), Indian Statistical Institute, Kolkata, 203, B.T. Road, Kolkata, WB, India. Email: [email protected], [email protected], [email protected]
*
*Corresponding author.

Abstract

Taxonomic status of several members of the family Naticidae is extremely vague because of its simple shell morphology. Conventional taxonomic classification schemes suggest that most of the morphological characters tend to be homoplastic and exhibit convergence. Such morphological convergence complicates naticid taxonomy and makes it difficult to understand the evolutionary history of this group; several unrelated taxa are often misidentified as naticids, thereby exaggerating the actual diversity of this group. Here, we employ a standard landmark-based approach to understand the pattern of morphological evolution of this family. Ordination methods such as principal components analysis and canonical variate analysis were used to create morphospaces, and disparity was quantified using variance and range. Our results reveal that when naticids are compared with their sister taxon, Ampullinidae, the two families show significant differences in their average shapes, despite their superficial resemblances. Among naticids, although the mean shapes of the individual subfamilies are different, overall, the family Naticidae has displayed extreme morphological conservatism from the Jurassic to the Holocene. Interestingly, this conservatism has been unaffected by taxonomic changesneither the extinction of the subfamily Gyrodinae nor the appearance of the subfamily Sininae affected this morphological conservatism. Naticids have always shown strong ecological preference toward an infaunal mode of life and strict behavioral selectivity in handling and preying upon infaunal organisms, and this ecological and behavioral conservatism could have enabled them to diversify without undergoing a change in their basic Bauplan.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.wm37pvmm8

*Corresponding author.

References

Literature Cited

Adams, D. C., and Otárola-Castillo, E.. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4:393399.CrossRefGoogle Scholar
Allmon, W. D., Nieh, J. C., and Norris, R. D.. 1990. Drilling and peeling of turritelline gastropods since the Late Cretaceous. Palaeontology 33:595611.Google Scholar
Anderson, L. C. 1992. Naticid gastropod predation on corbulid bivalves: effects of physical factors, morphological features, and statistical artifacts. Palaios 7:602620.CrossRefGoogle Scholar
Anderson, M. J., and Walsh, D. C. I.. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs 83:557574.CrossRefGoogle Scholar
Arnqvist, G., and Martensson, T.. 1998. Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientarium Hungaricae 44:7396.Google Scholar
Aronowsky, A. 2003. Evolutionary biology of naticid gastropods. Ph.D. dissertation. University of California, Berkeley.Google Scholar
Ausich, W. I., and Bottjer, D. J.. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Bandel, K. 1999. On the origin of the carnivorous gastropod group Naticoidea (Mollusca) in the Cretaceous with description of some convergent but unrelated groups. Greifswalder Geowissenschaftliche Beiträge 6:143175.Google Scholar
Bandel, K. 2000. Some gastropods from the Trichinopoly Group Tamil Nadu, India and their relation to those from the American Gulf Coast. Memoir Geological Society of India, Bangalore 46:65111.Google Scholar
Bandel, K., and Dockery, D. T. III. 2012. Protoconch characters of Late Cretaceous Latrogastropoda (Neogastropoda and Neomesogastropoda) as an aid in the reconstruction of the phylogeny of the Neogastropoda. Freiberger Forschungshefte C 542:93128.Google Scholar
Beu, A. G., and Marshall, B. A.. 2011. New Cenozoic records of genera and families from New Zealand (Mollusca, Gastropoda): highlights from Phillip Maxwell's collection. New Zealand Journal of Geology and Geophysics 54:1334.CrossRefGoogle Scholar
Bouchet, P., and Warén, A.. 1993. Revision of the northeast Atlantic bathyal and abyssal Mesogastropoda. Societá Italiana Malacologia, Bollettino Malacologico, Supplemento 3:579840.Google Scholar
Carvajal-Rodríguez, A., Conde-Padín, P., and Rolán-Alvarez, E.. 2005. Decomposing shell form into size and shape by geometric morphometric methods in two sympatric ecotypes of Littorina saxatilis. Journal of Molluscan Studies 71:313318.CrossRefGoogle Scholar
Cataldo, C. S., and Lazo, D. G.. 2016. Taxonomy and paleoecology of a new gastropod fauna from dysoxic outer ramp facies of the Lower Cretaceous Agrio Formation, Neuquén Basin, west-central Argentina. Cretaceous Research 57:165189.CrossRefGoogle Scholar
Caze, B., Merle, D., Le Meur, M., Pacaud, J. M., Ledon, D., and Saint Martin, J. P.. 2011. Taxonomic implications of the residual color patterns of ampullinid gastropods and their contribution to the discrimination from naticids. Acta Palaeontologica Polonica 56:329347.CrossRefGoogle Scholar
Chiba, T., and Sato, S.. 2012. Size-selective predation and drillhole-site selectivity in Euspira fortunei (Gastropoda: Naticidae): implications for ecological and palaeoecological studies. Journal of Molluscan Studies 78:205212.CrossRefGoogle Scholar
Ciampaglio, C. N. 2004. Measuring changes in articulate brachiopod morphology before and after the Permian mass extinction event: do developmental constraints limit morphological innovation? Evolution and Development 6:260274.CrossRefGoogle ScholarPubMed
Ciampaglio, C. N., Kemp, M., and McShea, D. W.. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.2.0.CO;2>CrossRefGoogle Scholar
Clarke, K. R. 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
Colgan, D. J., Ponder, W. F., Beacham, E., and Macaranas, J.. 2007. Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Molecular Phylogenetics and Evolution 42:717737.CrossRefGoogle Scholar
Collins, K. S., and Gazley, M. F.. 2017. Does my posterior look big in this? The effect of photographic distortion on morphometric analyses. Paleobiology 43:508520.CrossRefGoogle Scholar
Cossmann, M. 1919. Monographie illustrée des mollusques oligocèniques des environs de Rennes. Journal de Conchyliologie 64:133199.Google Scholar
Cox, L. R. 1930. The fossil fauna of the Samana Range and some neighbouring areas: Part VIII. The Mollusca of the Hangu shales. Memoirs of the Geological Survey of India, Palaeontologia Indica, new series 15:129222.Google Scholar
Das, S. S., Mondal, S., Saha, S., Bardhan, S., and Saha, R.. 2019. Family Naticidae (Gastropoda) from the Upper Jurassic of Kutch, India and a critical reappraisal of taxonomy and time of origination of the family. Journal of Paleontology 93:673684.CrossRefGoogle Scholar
Dell, R. K. 1990. Antarctic Mollusca: with special reference to the fauna of the Ross Sea. Royal Society of New Zealand Bulletin 27:1311.Google Scholar
Dietl, G. P., and Alexander, R. R.. 2000. Post-Miocene shift in stereotypic naticid predation on confamilial prey from the mid-Atlantic shelf: coevolution with dangerous prey. Palaios 15:414429.2.0.CO;2>CrossRefGoogle Scholar
Dietl, G. P., and Kelley, P. H.. 2002. The fossil record of predator–prey arms races: Coevolution and escalation hypotheses. In M. Kowalewski and P. H. Kelley, eds. The fossil record of predation. Paleontological Society Special Paper 8:353374.CrossRefGoogle Scholar
Eldredge, N., Thompson, J. N., Brakefield, P. M, Gavrilets, S., Jablonski, D., Jackson, J. B., Lenski, R. E., Lieberman, B. S., McPeek, M. A., and Miller, W.. 2005. The dynamics of evolutionary stasis. Paleobiology 31:133145.CrossRefGoogle Scholar
Everett, C. J. 2020. Shell morphometrics of marine gastropods: phylogenetics, variation, and plasticity. http://www.moorea-ucb.org/uploads/6/6/8/3/6683664/chris_everett_final_paper.pdf, accessed 24 March 2020.Google Scholar
Finlay, H. J., and Marwick, J.. 1937. The Wangaloan and associated molluscan faunas of Kaitangata–Green Island Subdivision. New Zealand Geological Survey Branch, Palaeontological Bulletin 15:153.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.CrossRefGoogle Scholar
Forbes, E. 1838. A catalogue of the Mollusca inhabiting the Isle of Man and the neighbouring sea. John Carfrae and Son, Edinburgh.Google Scholar
Fürsich, F. T., and Jablonski, D., 1984. Late Triassic naticid drillholes: carnivorous gastropods gain a major adaptation but fail to radiate. Science 24:7880.CrossRefGoogle Scholar
Griffin, M., and Pastorino, G.. 2013. Cenozoic Ampullinidae and Naticidae (Mollusca, Gastropoda) from Patagonia, Argentina. Journal of Paleontology 87:502525.CrossRefGoogle Scholar
Guilding, L. 1834. V. Observations on Naticina and Dentalium, two genera of molluscous animals. Transactions of the Linnean Society of London 17:2935.CrossRefGoogle Scholar
Hammer, Ø., Harper, D. A., and Ryan, P. D.. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4:19. https://www.nhm.uio.no/english/research/infrastructure/past.Google Scholar
Harper, E. M. 1994. Are conchiolin sheets in corbulid bivalves primarily defensive? Palaeontology 37:551578.Google Scholar
Hirano, T., Asato, K., Yamamoto, S., Takahashi, Y., and Chiba, S.. 2019. Cretaceous amber fossils highlight the evolutionary history and morphological conservatism of land snails. Scientific Reports 9:15886.CrossRefGoogle ScholarPubMed
Hogancamp, N. J., Barrick, J. E., and Strauss, R. E.. 2016. Geometric morphometric analysis and taxonomic revision of the Gzhelian (Late Pennsylvanian) conodont Idiognathodus simulator from North America. Acta Palaeontologica Polonica 61:477502.CrossRefGoogle Scholar
Hopkins, M. J., and Gerber, S.. 2017. Morphological disparity. Pp. 112 in de la Rosa, L. Nuno and Müller, G., eds. Evolutionary developmental biology: a reference guide. Springer International Publishing, Cham, Switzerland.Google Scholar
Hülsken, T. 2008. Phylogenetic relationship and species identification within the Naticidae Guilding, 1834 (Gastropoda: Caenogastropoda). Ph.D. dissertation. Ruhr University, Bochum, Germany.Google Scholar
Hülsken, T., Clemmensen, M., and Hollmann, M.. 2006. Neverita delessertiana (Recluz in Chenu, 1843): a naticid species (Gastropoda: Caenogastropoda) distinct from Neverita duplicata (Say, 1822) based on molecular data, morphological characters, and geographical distribution. Zootaxa 1257:125.Google Scholar
Hülsken, T., Marek, C., Schreiber, S., Schmidt, I., and Hollmann, M.. 2008. The Naticidae (Mollusca: Gastropoda) of Giglio Island (Tuscany, Italy): shell characters, live animals, and a molecular analysis of egg masses. Zootaxa 1770:140.CrossRefGoogle Scholar
Hülsken, T., Tapken, D., Dahlmann, T., Wägele, H., Riginos, C., and Hollmann, M.. 2012. Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology. Organisms Diversity & Evolution 12:349375.CrossRefGoogle Scholar
Huntley, J. W., and Kowalewski, M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.CrossRefGoogle ScholarPubMed
Isaacson, P. E., and Perry, D. G.. 1977. Biogeography and morphological conservatism of Tropidoleptus (Brachiopoda, Orthida) during the Devonian. Journal of Paleontology 51:11081122.Google Scholar
Kabat, A. R. 1990. The western Atlantic Naticidae (Mollusca: Gastropoda) with a catalogue of genera and a review of shell boring predation. Ph.D. dissertation. Harvard University, Cambridge, Mass.Google Scholar
Kabat, A. R. 1991. The classification of the Naticidae (Mollusca: Gastropoda): review and analysis of the supraspecific taxa. Bulletin of the Museum of Comparative Zoology Harvard University 152:417449.Google Scholar
Kabat, A. R. 1996. Biogeography of the genera of Naticidae (Gastropoda) in the Indo-Pacific. American Malacological Bulletin 12:2935.Google Scholar
Kase, T., and Ishikawa, M.. 2003. Mystery of naticid predation history solved: evidence from a “living fossil” species. Geology 31:403406.2.0.CO;2>CrossRefGoogle Scholar
Kelley, P. H. 1991. Apparent cannibalism by Chesapeake Group naticid gastropods: a predictable result of selective predation. Journal of Paleontology 65:7579.CrossRefGoogle Scholar
Kelley, P. H. 1992. Evolutionary patterns of naticid gastropods of the Chesapeake Group: an example of coevolution? Journal of Paleontology 66:794800.CrossRefGoogle Scholar
Kelley, P. H., and Hansen, T. A.. 1993. Evolution of the Naticid gastropod predator–prey system: an evaluation of the hypothesis of escalation. Palaios 8:358375.CrossRefGoogle Scholar
Kelley, P. H., and Hansen, T. A.. 2001. The role of ecological interactions in the evolution of naticid gastropods and their molluscan prey. Pp. 149170 in Allmon, W. D. and Bottjer, D. J., eds. Evolutionary paleoecology: the ecological context of macroevolutionary change. Columbia University Press, New York.CrossRefGoogle Scholar
Kelley, P. H., and Hansen, T. A.. 2003. The fossil record of drilling predation on bivalves and gastropods. Pp. 113139 in Kelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator–prey interactions in the fossil record. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Kelley, P. H., and Hansen, T. A.. 2006. Comparisons of class- and lower taxon-level patterns in naticid gastropod predation, Cretaceous to Pleistocene of the U.S. Coastal Plain. Palaeogeography Palaeoclimatology Palaeoecology 236:302320.CrossRefGoogle Scholar
Kilburn, R. N. 1976, A revision of the Naticidae of Southern Africa and Moçambique (Mollusca). Annals of the Natal Museum 22:829884.Google Scholar
Kitchell, J. A. 1986. The evolution of predator–prey behavior: naticid gastropods and their molluscan prey. Pp. 88110 in Nitecki, M. and Kitchell, J. A., eds. Evolution of animal behavior: paleontological and field approaches. Oxford University Press, New York.Google Scholar
Kitchell, J. A., Boggs, C. H., Kitchell, J. F., and Rice, J. A.. 1981. Prey selections by naticid gastropods: experimental tests and application to the fossil record. Paleobiology 7:533552.CrossRefGoogle Scholar
Kitchell, J. A., Boggs, C. H., Rice, J. A., Kitchell, J. F., Hoffman, A., and Martinell, J.. 1986. Anomalies in naticid predatory behavior: a critique and experimental observations. Malacologia 27:291298.Google Scholar
Klingenberg, C. P. 2013. Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix, the Italian Journal of Mammalogy 24:1524.Google Scholar
Klompmaker, A. A., Kowalewski, M., Huntley, J. W., and Finnegan, S.. 2017. Increase in predator–prey size ratios throughout the Phanerozoic history of marine ecosystems. Science 356:11781180.CrossRefGoogle ScholarPubMed
Kowalewski, M., Dulai, A., and Fürsich, F. T.. 1998. A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:10911094.2.3.CO;2>CrossRefGoogle Scholar
Majima, R. 1989. Cenozoic fossil Naticidae (Mollusca: Gastropoda) in Japan. Bulletins of American Paleontology 96:1159.Google Scholar
Marincovich, L. 1977. Cenozoic Naticidae (Mollusca: Gastropoda) of the northeastern Pacific. Bulletins of American Paleontology 70:169494.Google Scholar
Mondal, S., Goswami, P., and Bardhan, S.. 2017. Naticid confamilial drilling predation through time. Palaios 32:278287.CrossRefGoogle Scholar
Mondal, S., Chakraborty, H., and Paul, S.. 2019. Latitudinal patterns of gastropod drilling predation intensity through time. Palaios 34:261270.CrossRefGoogle Scholar
Nakagawa, S. 2004. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioural Ecology 15:10441045.CrossRefGoogle Scholar
Navarro, C. A., Martin-Silverstone, E., and Stubbs, T. L.. 2018. Morphometric assessment of pterosaur jaw disparity. Royal Society Open Science. doi: 10.1098/rsos.172130.CrossRefGoogle ScholarPubMed
Noshita, K., Asami, T., and Ubukata, T.. 2012. Functional constraints on coiling geometry and aperture inclination in gastropods. Paleobiology 38:322334.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H.. 2019. vegan: community ecology package, R package version 2.5-4. https://CRAN.R-project.org/package=vegan, accessed 28 August 2020.Google Scholar
Pahari, A., Mondal, S., Bardhan, S., Sarkar, D., Saha, S., and Buragohain, D.. 2016. Subaerial naticid gastropod drilling predation by Natica tigrina on the intertidal molluscan community of Chandipur, eastern coast of India. Palaeogeography, Palaeoclimatology, Palaeoecology 451:110123.CrossRefGoogle Scholar
Pedriali, L., and Robba, E.. 2005. A revision of the Pliocene naticids of northern and central Italy. I. The subfamily Naticinae except Tectonatica. Rivista Italiana di Paleontologia e Stratigrafia 111:109180.Google Scholar
Plotnick, R. E., and Wagner, P. J.. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.CrossRefGoogle Scholar
Polly, P. D., and Motz, G. J.. 2016. Patterns and processes in morphospace: geometric morphometrics of three-dimensional objects. Paleontological Society Papers 22:7199.CrossRefGoogle Scholar
Ponder, W. F., and Lindberg, D. R.. 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society 119:83265.CrossRefGoogle Scholar
Ponder, W. F., and Warén, A.. 1988. Classification of the Caenogastropoda and Heterostropha—a list of the family group and higher category names. In Ponder, W. F., ed. Prosobranch phylogeny. Proceedings of a Symposium held at the 9th International Malacological Congress, Edinburgh, Scotland. Malacological Review 4(Suppl.):88128.Google Scholar
Popenoe, W. P., Saul, L. R., and Susuki, T.. 1987. Gyrodiform gastropods from the Pacific Coast Cretaceous and Paleocene. Journal of Paleontology 61:70100.CrossRefGoogle Scholar
Powell, A. W. B. 1933. Notes on the taxonomy of the Recent Cymatiidae and Naticidae of New Zealand. Transactions of the New Zealand Institute 63:154170.Google Scholar
Ragagnin, M. N., Gorman, D., McCarthy, I. D., Sant'Anna, B. S., De Castro, C. C., and Turra, A.. 2018. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume. Scientific Reports 8:111.CrossRefGoogle ScholarPubMed
Raup, D. M. 1962. Computer as aid in describing form in gastropod shells. Science 138:150152.CrossRefGoogle ScholarPubMed
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M., and Stanley, S. M.. 1978. Principles of paleontology, 2nd ed. Freeman, San Francisco.Google Scholar
R Core Team. 2018. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Rodrigues, C. L., Nojima, S., and Kikuchi, T.. 1987. Mechanics of prey size preference in the gastropod Neverita didyma preying on the bivalve Ruditapes philippinarum. Marine Ecology Progress Series 40:8793.CrossRefGoogle Scholar
Rohlf, F. J. 2017. Program TpsDig, version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, N.Y.Google Scholar
Roy, K., Balch, D. P., and Hellberg, M. E.. 2001. Spatial patterns of morphological diversity across the Indo-Pacific: analyses using strombid gastropods. Proceedings of the Royal Society of London B 268:16.CrossRefGoogle ScholarPubMed
Savazzi, E. 1991. Constructional morphology of strombid gastropods. Lethaia 24:311331.CrossRefGoogle Scholar
Schlager, S. 2017. Morpho and Rvcg-Shape Analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. Pp. 217256 in Zheng, G., Li, S., and Székely, G. J., eds. Statistical shape and deformation analysis. Academic Press, London.CrossRefGoogle Scholar
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671675.CrossRefGoogle ScholarPubMed
Sohl, N. F. 1960. Archeogastropoda, Mesogastropoda, and stratigraphy of the Ripley, Owl Creek and Prairie Bluff formations. Professional Paper 331-A. U.S. Government Printing Office, Washington, D.C.CrossRefGoogle Scholar
Sohl, N. F. 1969. The fossil record of shell boring by snails. American Zoologist 9:725734.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125.CrossRefGoogle Scholar
Strong, E. E. 2003. Refining molluscan characters: morphology, character coding and a phylogeny of the Caenogastropoda. Zoological Journal of the Linnean Society 137:447554.CrossRefGoogle Scholar
Subba Rao, N. V., Dey, A., and Barua, S.. 1992. Estuarine and marine molluscs. Zoological Survey of India, State Fauna, Series 3:129268.Google Scholar
Vermeij, G. J. 1971. Gastropod evolution and morphological diversity in relation to shell geometry. Journal of Zoology 163:1523.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1983. Intimate association and coevolution in the sea. Pp. 311327 in Futuyma, D. J. and Slatkin, M., eds. Coevolution. Sinauer, Sunderland, Mass.Google Scholar
Vermeij, G. J. 1987. The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction. Evolution 41:10461058.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 2015. Forbidden phenotypes and the limits of evolution. Interface Focus 5:20150028.CrossRefGoogle ScholarPubMed
Wenz, W. 1938–1944. Gastropoda. In Schindewolf, O. H., ed. Handbuch der Palaözoologie 6:11639. Gebrüder Borntraeger, Berlin.Google Scholar
Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer, New York.CrossRefGoogle Scholar
Wills, M. A. 2001. Morphological disparity: a primer. Pp. 55144 in Adrian, M., Edgecombe, G. D., and Lieberman, B. S., eds. Fossils, phylogeny and form. Kluwer Academic, New York.CrossRefGoogle Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A.. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.CrossRefGoogle Scholar
Witts, J. D., Landman, N. H., Hopkins, M. J., and Myers, C. E.. 2020. Evolutionary stasis, ecophenotypy and environmental controls on ammonite morphology in the Late Cretaceous (Maastrichtian) Western Interior Seaway, USA. Palaeontology 63:791806.CrossRefGoogle Scholar
Woodring, W. P. 1928. Miocene mollusks from Bowden, Jamaica: pelecypods and scaphopods. Publications of the Carnegie Institution 366:1222.Google Scholar
Woodring, W. P. 1957. Geology and paleontology of Canal Zone and adjoining parts of Panama. Professional Paper 306-A. U.S. Government Printing Office, Washington, D.C.Google Scholar
Yamamoto, S., Takahashi, Y., and Parker, J.. 2017. Evolutionary stasis in enigmatic jacobsoniid beetles. Gondwana Research 45:275281.CrossRefGoogle Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L.. 2004. Geometric morphometrics for biologists: a primer. Academic Press, San Diego, Calif.Google Scholar
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L.. 2012. Geometric morphometrics for biologists: a primer, 2nd ed. Elsevier/Academic Press, Amsterdam.Google Scholar
Zelditch, M. L., Li, J., Tran, L. A. P., and Swiderski, D. L.. 2015. Relationships of diversity, disparity, and their evolutionary rates in squirrels (Sciuridae). Evolution 69:12841300.CrossRefGoogle Scholar