Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T18:35:04.214Z Has data issue: false hasContentIssue false

A model of wear in curved mammal teeth: controls on occlusal morphology and the evolution of hypsodonty in lagomorphs

Published online by Cambridge University Press:  08 April 2016

Andrea R. Bair*
Affiliation:
Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399. E-mail: [email protected]

Abstract

Cheek teeth of some mammalian herbivores exhibit pronounced changes in occlusal size and shape through wear, purportedly caused by strong curvature. Such changes are extreme in the upper cheek teeth of extinct, dentally archaic lagomorphs. Morphologic and taxonomic turnover in lagomorphs suggests that these dentally archaic forms may have been unable to develop hypselodont (ever-growing) cheek teeth. This study investigates how the interaction of tooth shape and wear can cause occlusal size and shape changes, and potentially impose structural constraints on crown height. These constraints may help explain extinction of mammals with teeth like archaic lagomorphs, evolution and diversification of other mammalian herbivores during the late Miocene, and the relative paucity of hypsodont cheek tooth shapes in extant mammals.

I first quantify two-dimensional curvature accounting for shape differences observed in hypsodont teeth, P4s of the archaic lagomorphs Russellagus and Hesperolagomys, which exhibit pronounced change with wear, and Ondatra lower incisors, which show minimal change with wear. Using this quantification, I generate theoretical curvature morphologies and describe a geometric model of tooth wear that generates values for qualitative and quantitative aspects of the occlusal surface at different wear stages. Modeled results of wear surface topography and dimensions closely correspond to observed patterns in Russellagus, Hesperolagomys, and Ondatra. Model results on wear in theoretical tooth morphologies identify two major shape factors influencing wear: orientation of the wear surface (incisor-like or cheek-tooth-like), and tooth curvature (“concentric” or “nonconcentric”). Modeled wear also suggests two geometric constraints on crown height. Teeth with nonconcentric curvatures can have crown height limited by potential tooth area. “Incomplete wear” in any tooth can present severe constraints on increasing crown height, causing structurally untenable morphologies in very tall-crowned to hypselodont teeth.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adobe, . 2002. Adobe Illustrator, Version 10.0.3. Adobe Systems Incorporated.Google Scholar
Ackerly, S. C. 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 4:374378.Google Scholar
Akersten, W. A. 1981. A graphic method for describing the lateral profile of isolated rodent incisors. Journal of Vertebrate Paleontology 1:231234.CrossRefGoogle Scholar
Asher, R. J., Meng, J., Wible, J. R., McKenna, M. C., Rougier, G. W., Dashzeveg, D., and Novacek, M. J. 2005. Stem Lagomorpha and the antiquity of Glires. Science 307:10911094.CrossRefGoogle ScholarPubMed
Bair, A. R. 2006. Reassessment of the North American archaic pikas Hesperolagomys and Russellagus (Lagomorpha: Ochotoridae) and geometric constraints on the evolution of hypsodonty in mammals. . University of Nebraska, Lincoln.Google Scholar
Baudry, M. 1992. Les Tillodontes (Mammalia) de l'Eocene inferieur de France. Bulletin du Museum d'Histoire Naturelle, Paris, série C4, 14:205243.Google Scholar
Bohlin, B. 1942. The fossil mammals from the Tertiary deposit of Taben-buluk, Western Kansu, Part I. Insectivora and Lagomorpha. Palaeontologia Sinica, new series C, 8a:1113.Google Scholar
Dawson, M. R. 1967. Lagomorph history and the stratigraphic record. Pp. 287315 in Teichert, C. and Yochelson, E. L., eds. Essays in paleontology and stratigraphy. R. C. Moore Commemorative Volume, Department of Geology, University of Kansas, Special Publication 2. University of Kansas Press, Lawrence.Google Scholar
Downs, T. 1961. A study of variation and evolution in Miocene Merychippus . Los Angeles County Museum Contributions to Science 45:175.Google Scholar
Flynn, L. J. 1982. Systematic revision of Siwalik Rhizomyidae (Rodentia). Geobios 15:327389.CrossRefGoogle Scholar
Hooper, E. T. 1952. A systematic review of the harvest mice (genus Reithrodonomys) of Latin America. University of Michigan, Miscellaneous Publications of Museum of Zoology 77:1273.Google Scholar
Huang, X.-S. 1987. Fossil ochotonids from the middle Oligocene of Ulantatal, Nei Mongol. Vertebrata PalAsiatica 25:260282.Google Scholar
Janis, C. M., and Fortelius, M. 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biological Reviews 63:197230.CrossRefGoogle ScholarPubMed
Landry, S. O. Jr. 1957. Factors affecting the procumbency of rodent upper incisors. Journal of Mammalogy 38:223234.CrossRefGoogle Scholar
MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and the evolution of the Family Equidae. Cambridge University Press, New York.Google Scholar
MacFadden, B. J., and Carranza-Castaneda, O. 2002. Cranium of Dinohippus mexicanus (Mammalia: Equidae) from the early Pliocene (latest Hemphillian) of central Mexico, and the origin of Equus . Bulletin of the Florida Museum of Natural History 43:163185.Google Scholar
Martinez, N. L. 1984. Reconstruction of ancestral cranioskeletal features in the Order Lagomorpha. Pp. 151189 in Luckett, W. P. and Hartenberger, J.-L., eds. Evolutionary relationships among rodents: a multidisciplinary approach. Plenum, New York.Google Scholar
McGhee, G. R. 1999. Theoretical morphology: the concept and its application. Columbia University Press, New York.Google Scholar
Millien, V., and Jaeger, J.-J. 2001. Size evolution of the lower incisor of Microtia, a genus of endemic murine rodents from the late Neogene of Gargano, southern Italy. Paleobiology 27:379391.2.0.CO;2>CrossRefGoogle Scholar
Nowak, R. M. 1999. Walker's mammals of the world. Johns Hopkins University Press, Baltimore.CrossRefGoogle Scholar
Parra, V., Loreau, M., and Jaeger, J.-J. 1999. Incisor size and community structure in rodents: two tests of the role of competition. Acta Oecologica 20:93101.CrossRefGoogle Scholar
Radinsky, L. 1984. Ontogeny and phylogeny in horse skull evolution. Evolution 38:115.CrossRefGoogle ScholarPubMed
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Rice, S. H. 1998. The bio-geometry of mollusc shells. Paleobiology 24:133149.CrossRefGoogle Scholar
Richardson, M. K., and Chipman, A. D. 2003. Developmental constraints in a comparative framework: a test using variations in phalanx number during amniote evolution. Journal of Experimental Zoology, Part B (Molecular Development Evolution) 296:822.CrossRefGoogle Scholar
Richter-Gebert, J. and Kortenkamp, U. H. 2000. Cinderella, Version 1. 2.Google Scholar
Schmidt-Kittler, N., and Vianey-Liaud, M. 1987. Morphometric analysis and evolution of the dental pattern of the genus Issiodoromys (Theridomyidae, Rodentia) of the European Oligocene as a key to its evolution. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series B, Palaeontology, Geology, Physics, Chemistry, Anthropology 90:281306.Google Scholar
Savazzi, E. 1987. Geometric and functional constraints on bivalve shell morphology. Lethaia 20:293306.CrossRefGoogle Scholar
Skinner, M. F., and Taylor, B. E. 1967. A revision of the geology and paleontology of the Bijou Hills, South Dakota. American Museum Novitates 2300:153.Google Scholar
Stirton, R. A. 1935. A review of the Tertiary beavers. Bulletin of the Department of Geological Sciences, University of California 23:391458.Google Scholar
Sych, L. 1975. Lagomorpha from the Oligocene of Mongolia. Palaeontogica Polonica 33:183200.Google Scholar
Thompson, D. 1992. On growth and form: the complete revised edition. Dover, New York.CrossRefGoogle Scholar
Tobien, H. 1974. Zur Gebistruktur, Systematik und Evolution der Genera Amphilagus und Titanomys (Lagomorpha, Mammalia) aus einigen Vorkommen im jüngeren Tertiär Mittel- und Westeuropas. Mainzer Geowissenschaftliche Mitteilungen 3:95214.Google Scholar
Tobien, H. 1975. Zur Gebistruktur, Systematik und Evolution der Genera Piezodus, Prolagus und Ptychoprolagus (Lagomorpha, Mammalia) aus einigen Vorkommen im jüngeren Tertiär Mittel- und Westeuropas. Notizblatt des Hessischen Landesamtes für Bodenforschung zu Wiesbaden 103:103186.Google Scholar
Tobien, H. 1978. Brachydonty and hypsodonty in some Paleogene Eurasian lagomorphs. Mainzer Geowissenschaftliche Mitteilungen 6:161175.Google Scholar
Vianey-Liaud, M. 1976. Les Issiodoromyinae (Rodentia, Theridomyidae) de l'Eocene superieur a l'Oligocene superier en Europe occidentale. Palaeovertebrata 7:1115.Google Scholar
Vischer, N. 2003. Object-Image, Version 2. 11. Centre for Advanced Microscopy, University of Amsterdam.Google Scholar
Weintraub, J. D., and Shockley, G. 1981. Use of incisors to identify rodent genera in owl pellets. Bulletin of the Southern California Academy of Sciences 79:127129.Google Scholar
White, J. A., and Downs, T. 1961. A new Geomys from the Vallecito Creek Pleistocene of California, with notes on variation in Recent and fossil species. Los Angeles County Museum, Contributions in Science 42:134.Google Scholar
Wood, A. E. 1940. Part III: Lagomorpha. In Scott, W. B. and Jepsen, G. L., eds. The mammalian fauna of the White River Oligocene. Transactions of the American Philosophical Society, new series 28:271362.Google Scholar