Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:47:25.593Z Has data issue: false hasContentIssue false

A model for paleobiogeography of South American cricetine rodents

Published online by Cambridge University Press:  08 February 2016

Larry G. Marshall*
Affiliation:
Department of Geology, Field Museum of Natural History, Chicago, Illinois 60605

Abstract

A model for the paleobiogeographic history of South American cricetine rodents is proposed based on new and/or recently published fossil, geological, paleobotanical and radioisotope data. Cricetine rodents of the tribe Sigmodontini evolved in North America before 7.0 Myr BP. They got to South America by waif dispersal across the Bolivar Trough marine barrier from Central America during a world wide drop in sea level (the “Messinian Low”) between 7.0 and 5.0 Myr BP. The basal stock was probably a sylvan (forest) form, from which evolved pastoral (grazing) forms in the savanna-grassland area of Venezuela, Colombia and the Guianas. The pastoral forms in the northern savanna-grassland area were restricted there until about 3.5 Myr BP. At that time there occurred the first glaciation in South America and consonant with glacial advance was a retraction of forest habitats and an expansion of savanna-grassland habitats. At that time the pastoral forms were able to disperse southward through a savanna-grassland corridor along the eastern foothills of the Andes and spread throughout the previously disjunct savanna-grasslands of Bolivia and Argentina. Cricetines are first recorded as fossil in the Monte Hermoso Fm. of Argentina which is about 3.5 Myr BP in age. The Panamanian land bridge came into existence about 3.0 Myr BP as indicated by the beginning of a major interchange of terrestrial faunas between the Americas, which was well underway by 2.7 Myr BP.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baskin, J. A. 1978. Bensonomys, Calomys, and the origin of the phyllotine group of Neotropical cricetines (Rodentia: Cricetidae). J. Mammal. 59:125135.CrossRefGoogle Scholar
Berggren, W. A. 1972. A cenozoic time-scale—some implications for regional geology and palaeobiogeography. Lethaia. 5:195215.CrossRefGoogle Scholar
Bonaparte, J. F. 1960. La sucesion estratigrafica de Monte Hermoso (Prov. de Bs. Aires). Acta Geol. Lilloana, Tucumán, III:273287.Google Scholar
Geel, B. van, and van der Hammen, T. 1973. Upper Quaternary vegetation and climatic sequence of the Fuguene area (Eastern Cordillera, Colombia). Palaeogeogr., Paleoclimatol., Palaeoecol. 14:992.CrossRefGoogle Scholar
Haffer, J. 1969. Speciation in Amazon forest birds. Science. 165:131137.CrossRefGoogle Scholar
Haffer, J. 1974. Avian speciation in tropical South America. Publ. Nattall Ornithol. Club. 14:1390.Google Scholar
Hershkovitz, P. 1962. Evolution of Neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Fieldiana: Zool. 46:1524.Google Scholar
Hershkovitz, P. 1966. Mice, land bridges and Latin America faunal interchange. Pp. 725747. In: Wenzel, R. L. and Tipton, V. J., eds. Parasites of Panamá. Field Mus. Nat. Hist.; Chicago, Ill.Google Scholar
Hershkovitz, P. 1972. The recent mammals of the Neotropical Region. Pp. 311431. In: Keast, A., Erk, F. C. and Glass, B., eds. Evolution, Mammals and Southern Continents. 543 pp.State Univ. N. Y. Press; Albany, New York.Google Scholar
Hueck, K. and Seibert, P. 1972. Vegetationskarte von Südamerika. Mapa de la Vegetación de America del Sur. 69 pp. Gustav Fischer Verlag; Stuttgart.Google Scholar
Kennett, J. P. 1968. Paleo-oceanographic aspects of the foraminiferal zonation in the Upper Miocene-Lower Pliocene of New Zealand. Committee on Mediterranean Neogene Stratigraphy, Proc. Giornale de Geol. Bologna. 35:143156.Google Scholar
Lindsay, E. H., Johnson, N. M. and Opdyke, N. D. 1976. Preliminary correlation of North American Land Mammal Ages and Geomagnetic chronology, pp. 111119. In: University of Michigan Papers on Paleontology, no. 12.Google Scholar
Marshall, L. G., Butler, R. F., Drake, R. E., Curtis, G. H., and Tedford, R. H. 1979. Calibration of the Great American Interchange. Science. 204:272279.CrossRefGoogle ScholarPubMed
Marshall, L. G. and Hecht, M. K. 1978. Mammalian faunal dynamics of the Great American Interchange: an alternative interpretation. Paleobiology. 4:203206.CrossRefGoogle Scholar
Marshall, L. G., Hoffstetter, R. and Pascual, R.In press. Geochronology of the continental mammal-bearing Tertiary of South America. Ch. 7. In: Woodburne, M. O., ed. Vertebrate Paleontology as a Discipline in Geochronology. Univ. Calif. Press.Google Scholar
Mercer, J. H. 1973. Cainozoic temperature trends in the southern hemisphere: Antarctic and Andean glacial evidence. Pp. 87114. In: van Zinderen Bakker, E. M. Sr., ed. Palaeoecology of Africa, The Surrounding Islands and Antarctica. Balkema; Cape Town.Google Scholar
Mercer, J. H. 1976. Glacial history of southernmost South America. Quat. Res. 6:125166.CrossRefGoogle Scholar
Müller, P. 1973. The dispersal centers of terrestrial vertebrates in the Neotropical realm. II. 244 pp. Biogeographica; The Hague.Google Scholar
Patterson, B. and Pascual, R. 1972. The fossil mammal fauna of South America. Pp. 247309. In: Keast, A., Erk, F. C. and Glass, B., eds. Evolution, Mammals and Southern Continents. 543 pp.State Univ. N.Y. Press; Albany, New York.Google Scholar
Prance, G. T.; 1978. The origin and evolution of the Amazon Flora. Interciencia. 3:207222.Google Scholar
Raven, P. H. and Axelrod, D. I. 1975. History of the flora and fauna of Latin America. Am. Sci. 63:420429.Google Scholar
Reig, O. A.In press a. Roedores cricétidos del Plioceno Superior de la Provincia de Buenos Aires (Argentina). Publ. Mus. Munic. Cienc. Nat. “Lorenzo Scaglia.”Google Scholar
Reig, O. A.In press b. A new fossil genus of South American cricetid rodents allied to Wiedomys, with an assessment of the Sigmodontinae. Ibid.Google Scholar
Reig, O. A. and Linares, O. J. 1969. The occurrence of Akodon in the upper Pliocene of Argentina. J. Mammal. 50:643647.CrossRefGoogle Scholar
Sarmiento, G. 1976. Evolution of arid vegetation in tropical America. Pp. 6599. In: Goodall, D. S., ed. Evolution of Desert Biota. Univ. Tex. Press; Austin, Texas.CrossRefGoogle Scholar
Savage, J. M. 1974. The isthmian link and the evolution of neotropical mammals. Nat. Hist. Mus. Los Angeles Cty., Sci. Publ. 260:151.Google Scholar
Simpson, B. 1975. Pleistocene changes in the flora of the high tropical Andes. Paleobiology. 1:273294.CrossRefGoogle Scholar
Van der Hammen, T. 1972. História de la vegetacion y el medio ambiente del norte sudamericano. Pp. 119134. Mem. de Symp. I. Congr. Lat. Amer. Mex. Bot., 3-9 December, México, D.F., Méx.Google Scholar
Van der Hammen, T. 1974. The Pleistocene changes of vegetation and climate in tropical South America. J. Biogeogr. 1:326.CrossRefGoogle Scholar
Van der Hammen, T. and Gonzales, E. 1960. Upper Pleistocene and Holocene climate and vegetation of the “Sabana de Bogota” (Colombia, South America). Leidse Geol. Meded. 25:261315.Google Scholar
Van der Hammen, T., Werner, J. H., and van Dommelen, H. 1973. Palynological record of the upheaval of the northern Andes: a study of the Pliocene and lower Quaternary of the Colombian eastern cordillera and the early evolution of its high-andean biota. Rev. Palaeobot. Palynol. 16:1122.CrossRefGoogle Scholar
Vuilleumier, B. S. 1971. Pleistocene changes in the fauna and flora of South America. Science. 173:771780.CrossRefGoogle ScholarPubMed
Webb, S. D. 1978. A history of Savanna vertebrates in the New World. Part II: South America and the Great Interchange. Annu. Rev. Ecol. Syst., 9:393426.CrossRefGoogle Scholar
Webb, S. D.In press. Large scale community succession by two kinds of rapid turnover. In: Berggren, W. A., and van Couvering, J. A., eds. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Webb, S. D., Wise, S. W., and Wright, R. 1978. Late Miocene glacio-eustatic cycles in Florida: marine and fluvio-estuarine sequences. Geol. Soc. A. (Abstr.).Google Scholar