Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T01:21:59.589Z Has data issue: false hasContentIssue false

Major patterns of visual brain organization in teleosts and their relation to prehistoric events and the paleontological record

Published online by Cambridge University Press:  08 February 2016

Mario F. Wullimann*
Affiliation:
University of Bremen, FB 2, Brain Research Institute, Post Office Box 33 04 40, D-28334 Bremen, Federal Republic of Germany. E-mail: wulliman.@uni-bremen

Abstract

A cladistic analysis of the three recognized patterns of central nervous visual organization among teleosts reveals that there is a pattern of intermediate complexity representing the plesiomorphic condition for teleosts, and that there is a simple visual pattern in two unrelated teleost groups which can be concluded to be a secondarily reduced derived condition, as well as an elaborate pattern which is present only in acanthomorph teleosts, thus likely representing a synapomorphy for this taxon. The elaborate central nervous visual pattern, therefore, is one of many functional-anatomical advanced features characterizing the acanthomorphs. Furthermore, when neontological and paleontological data is compared with the paleoecological record of early acanthomorph history during the Late Cretaceous, it is consistent with a hypothesis that this acanthomorph synapomorphic functional-anatomical complex arose likely in ctenothrissiforms as an adaptation to the life in the reorganizing reefs of that geologic period.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, A. M. 1975. The chordates. Cambridge University Press, London.Google Scholar
Bell, C. C., and Szabo, T. S. 1986. Electroreception in mormyrid fish. pp. 375421in Bullock and Heiligenberg 1986.Google Scholar
Bellwood, D. R. 1996. The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblage. Coral Reefs 15:1119.CrossRefGoogle Scholar
Blot, J. 1980. La faune ichthyologique des gisements du Monte Bolca (Province de Vérone, Italie). Catalogue systématique présentant l'état actuel des recherches concernant cette faune. Bulletin du Muséum Nationale d'Histoire Naturelle, Paris, 4e série, 2, section C, No. 4:339396.Google Scholar
Braford, M. R. Jr. 1986. African knifefishes. pp. 453464in Bullock and Heiligenberg 1986.Google Scholar
Bullock, T. H., and Heiligenberg, W. 1986. Electroreception. Wiley, New York.Google Scholar
Butler, A. B., and Northcutt, R. G. 1992. Retinal projections in the bowfin Amia calva: cytoarchitectonic and experimental analysis. Brain, Behavior and Evolution 39:169194.CrossRefGoogle ScholarPubMed
Butler, A. B., Wullimann, M. F., and Northcutt, R. G. 1991. Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain, Behavior and Evolution 38:92114.CrossRefGoogle ScholarPubMed
Carr, C. E., and Maler, L. 1986. Electroreception in gymnotiform fish. pp. 319373in Bullock and Heiligenberg 1986.Google Scholar
Carroll, R. L. 1988. Vertebrate paleontology and evolution. W. H. Freeman, New York.Google Scholar
Choat, J. H., and Bellwood, D. R. 1991. Reef fishes: their history and evolution. pp. 3966in Sale 1991b.Google Scholar
Fagerstrom, J. A. 1987. The evolution of reef communities. Wiley, New York.Google Scholar
Finger, T. E. 1978. Gustatory pathways in the bullhead catfish. II. Facial lobe connections. Journal of Comparative Neurology 180:691.706.Google ScholarPubMed
Finger, T. E. 1986. Electroreception in catfish: behavior, anatomy and electrophysiology. pp. 287317in Bullock and Heiligenberg 1986.Google Scholar
Fink, S. V., and Fink, W. L. 1981. Interrelationships of the ostariophysan fishes (Teleostei). Zoological Journal of the Linnean Society 72:297353.CrossRefGoogle Scholar
Greenwood, P. H. 1977. Notes on the anatomy and classification of elopomorph fishes. Bulletin of the British Museum of Natural History (Zoology) 32:65102.Google Scholar
Greenwood, P. H., Rosen, D. E., Weitzman, S. H., and Myers, G. S. 1966. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History 131:339444.Google Scholar
Harris, J. E. 1938. The role of the fins in the equilibrium of the swimming fish. II. The role of the pelvic fins. Journal of Experimental Biology 15:3247.Google Scholar
Harris, J. E. 1953. Fin patterns and mode of life of fishes. pp. 1728in Essays in marine biology. Oliver and Boyd, London and Edinburgh.Google Scholar
Ito, H., and Kishida, R. 1975. Organization of the teleostean nucleus rotundus. Journal of Morphology 147:89107.CrossRefGoogle ScholarPubMed
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.CrossRefGoogle ScholarPubMed
Johnson, G. D. 1993. Percomorph phylogeny: progress and problems. Bulletin of Marine Science 52:328.Google Scholar
Johnson, G. D., and Anderson, W. D. Jr. 1993. Proceedings of the symposium on phylogeny of percomorpha. Bulletin of Marine Science 52:1626.Google Scholar
Johnson, G. D., and Patterson, C. 1993. Percomorph phylogeny: a survey of acanthomorphs and a new proposal. Bulletin of Marine Science 52:554626.Google Scholar
Kanwal, J. S., and Caprio, J. 1988. Overlapping taste and tactile maps of oropharynx in the vagal lobe of the channel catfish, Ictalurus punctatus. Journal of Neurobiology 19:211222.CrossRefGoogle ScholarPubMed
King, W. M., and Schmidt, J. T. 1993. Nucleus isthmi in goldfish: in vitro recordings and fiber connections revealed by HRP injections. Visual Neuroscience 10:419437.CrossRefGoogle ScholarPubMed
Knudsen, E. I. 1977. Distinct auditory and lateral line nuclei in the midbrain of catfishes. Journal of Comparative Neurology 173:417432.CrossRefGoogle ScholarPubMed
Lamb, C. F., and Caprio, J. 1993. Diencephalic gustatory connections in the channel catfish. Journal of Comparative Neurology 337:400418.CrossRefGoogle ScholarPubMed
Lauder, G. V. 1982. Patterns of evolution in the feeding mechanism of actinopterygian fishes. American Zoologist 22:275285.CrossRefGoogle Scholar
Lauder, G. V. 1994. Homology, form, and function. pp. 151196in Hall, B. K., ed. Homology. The hierarchical basis of comparative biology. Academic Press, San Diego.Google Scholar
Lauder, G. V., and Liem, K. F. 1983. The evolution and interrelationships of the actinopterygian fishes. Bulletin of the Museum of Comparative Zoology 150:95197.Google Scholar
Leis, J. M. 1991. The pelagic stage of reef fishes: the larval biology of coral reef fishes. pp. 183230in Sale 1991b.Google Scholar
Liem, K. F., and Greenwood, P. H. 1981. A functional approach to the phylogeny of the pharyngognath teleosts. American Zoologist 21:83101.CrossRefGoogle Scholar
Maisey, J. G. 1986. Heads and tails: a chordate phylogeny. Cladistics 2:201256.CrossRefGoogle ScholarPubMed
McCormick, C. A. 1992. Evolution of central auditory pathways in anamniotes. pp. 323350In Webster, D. B., Fay, R. R., and Popper, A. N., eds. The evolutionary biology of hearing. Springer, New York.CrossRefGoogle Scholar
Meek, J. 1990. Tectal morphology: connections, neurons and synapses. pp. 239277In Douglas, R. H., and Djamgoz, M. B. A., eds. The visual system of fish. Chapman and Hall, London.CrossRefGoogle Scholar
Mooi, R. D., and Gill, A. C. 1995. Association of epaxial musculature with dorsal-fin pterygiophores in acanthomorph fishes, and its phylogenetic significance. Bulletin of the Natural History Museum London (Zoology) 61:121137.Google Scholar
Montgomery, W. L. 1990. Zoogeography, behavior and ecology of coral-reef fishes. Pp.329364in Dubinsky, Z., ed. Ecosystems of the world: coral reefs, Vol. 25. Elsevier, Amsterdam.Google Scholar
Morita, Y., and Finger, T. E. 1985. Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. Journal of Comparative Neurology 238:187201.CrossRefGoogle ScholarPubMed
Morita, Y., Ito, H., and Masai, H. 1980. Central gustatory paths in the crucian carp, Carassius carassius. Journal of Comparative Neurology 191:119132.CrossRefGoogle ScholarPubMed
Murakami, T., Morita, Y., and Ito, H. 1986. Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Research 373:213221.CrossRefGoogle Scholar
Myers, R. F. 1989. Micronesian reef fishes. Coral Graphics, Agana, Guam.Google Scholar
Nelson, G. J. 1969. Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bulletin of the American Museum of Natural History 141:477552.Google Scholar
Nelson, G. J. 1973a. Relationships of clupeomorphs, with remarks on the structure of the lower jaw in fishes. pp. 333349In Greenwood, P. H., Miles, R. S., and Patterson, C., eds. Interrelationships of fishes. Zoological Journal of the Linnean Society 53, Suppl. 1.Google Scholar
Nelson, G. J. 1973b. Notes on the structure and relationships of certain Cretaceous and Eocene teleostean fishes. American Museum Novitates 2524:131.Google Scholar
Nelson, J. S. 1994. Fishes of the world. Wiley, New YorkGoogle Scholar
Northcutt, R. G. 1983. Evolution of the optic tectum in rayfinned fishes. pp. 142In Davis, R. E. and Northcutt, R. G., eds. Fish neurobiology, Vol. 2, Higher brain areas and functions. University of Michigan Press, Ann Arbor.Google Scholar
Northcutt, R. G. 1984. Evolution of the vertebrate central nervous system: patterns and processes. American Zoologist 24:701716.CrossRefGoogle Scholar
Northcutt, R. G. 1989. The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. pp. 1778In Coombs, S., Görner, P., and Münz, H., eds. The mechanosensory lateral line. Springer, New York.CrossRefGoogle Scholar
Northcutt, R. G., and Braford, M. R. Jr. 1984. Some efferent connections of the superficial pretectum in the goldfish. Brain Research 296:181184.CrossRefGoogle ScholarPubMed
Northcutt, R. G., and Butler, A. B. 1993. The diencephalon and optic tectum of the longnose gar, Lepisosteus osseus (L.): cytoarchitectonics and distribution of acetylcholinesterase. Brain, Behavior and Evolution 41:5782.CrossRefGoogle ScholarPubMed
Northcutt, R. G., and Wullimann, M. F. 1988. The visual system in teleost fishes: morphological patterns and trends. pp. 515552In Atema, J., Fay, R. R., Popper, A. N., and Tavolga, W. N., eds. Sensory biology of aquatic animals. Springer, New York.CrossRefGoogle Scholar
Parenti, L. 1993. Relationships of atherinomorph fishes (Teleostei). Bulletin of Marine Science 52:170196.Google Scholar
Patterson, C. 1964. A review of Mesozoic acanthopterygian fishes, with special reference to those of the English chalk. Philosophical Transactions of the Royal Society of London B 247:213482.Google Scholar
Patterson, C. 1977. The contribution of paleontology to teleostean phylogeny. pp. 579643In Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major patterns in vertebrate evolution. Plenum, New York.CrossRefGoogle Scholar
Patterson, C. 1981. Biogeography and the North American fish fauna. pp. 265281in Forey, P. L., ed. The evolving biosphere. Cambridge University Press, Cambridge.Google Scholar
Patterson, C. 1993. An overview of the early fossil record of acanthomorphs. Bulletin of Marine Science 52:2959.Google Scholar
Patterson, C., and Rosen, D. E. 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History 158:81172.Google Scholar
Puzdrowski, R. L. 1987. The peripheral distribution and central projections of the sensory rami of the facial sensory nerve in goldfish, Carassius auratus. Journal of Comparative Neurology 259:382392.CrossRefGoogle ScholarPubMed
Rosen, D. E. 1964. The relationships and taxonomic position of the halfbeaks, killifishes, silversides, and their relatives. Bulletin of the American Museum of Natural History 127:217267.Google Scholar
Rosen, D. E. 1982. Teleostean interrelationships, morphological function and evolutionary inference. American Zoologist 22:261273.CrossRefGoogle Scholar
Rosen, D. E., and Patterson, C. 1969. The structure and relationships of the paracanthopterygian fishes. Bulletin of the American Museum of Natural History 141:359474.Google Scholar
Rowe, J. S., and Beauchamp, R. D. 1982. Visual responses of nucleus corticalis neurons in the perciform teleost, northern rock bass (Ambloplites rupestris rupestris). Brain Research 236:205209.CrossRefGoogle ScholarPubMed
Sakamoto, N., and Ito, H. 1982. Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. Journal of Comparative Neurology 205:291298.CrossRefGoogle Scholar
Sale, P. F. 1991a. Introduction. pp. 315in Sale 1991b.Google Scholar
Sale, P. F. 1991b. The ecology of fishes on coral reefs. Academic Press, San Diego.Google Scholar
Senn, D. G. 1994. Wie Fische schwimmen. Archaeopteryx 12:2534.Google Scholar
Sorbini, L. 1983. La collezione Baja die pescie piante fossili di Bolca. Museo Civico di Storia naturale, Verona.Google Scholar
Springer, V. G. 1982. Pacific plate biogeography, with special reference to shore-fishes. Smithsonian Institution Contributions to Zoology 367:1182.Google Scholar
Stanley, G. D. Jr. 1981. Early history of scleractinian corals and its geological consequences. Journal of Geology 9:507511.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. 1986. Earth and life through time. W. H. Freeman, New York.Google Scholar
Striedter, G. 1991. Auditory, electrosensory and mechanosensory lateral line pathways through the forebrain in channel catfishes. Journal of Comparative Neurology 312:311331.CrossRefGoogle ScholarPubMed
Striedter, G. 1992. Phylogenetic changes in the connection of the lateral preglomerular nucleus in ostariophysan teleosts: a pluralistic view of brain evolution. Brain, Behavior and Evolution 39:329357.CrossRefGoogle ScholarPubMed
Striedter, G., and Northcutt, R. G. 1989. Two distinct visual pathways through the superficial pretectum in a percomorph fish. Journal of Comparative Neurology 283:342354.CrossRefGoogle Scholar
Tyler, J. C., Johnson, G. D., Nakamura, I., and Collette, B. B. 1989. Morphology of Luvarus imperialis (Luvaridae), with a phylogenetic analysis of the Acanthuroidei (Pisces). Smithsonian Institution Contributions to Zoology 485:178.Google Scholar
Webb, P. W. 1982. Locomotor patterns in the evolution of actinopterygian fishes. American Zoologist 22:329341.CrossRefGoogle Scholar
Webb, P. W. 1984. Form and function in fish swimming. Scientific American 251:5868.CrossRefGoogle Scholar
Weitzman, S. H. 1974. Osteology and evolutionary relationships of the Sternoptychidae with a new classification of stomiatoid families. Bulletin of the American Museum of Natural History 153:327478.Google Scholar
Williams, B., and Vanegas, H. 1982. Tectal projections in teleosts: responses of some target nuclei to direct tectal stimulation. Brain Research 242:39.CrossRefGoogle ScholarPubMed
Wullimann, M. F. 1988. The tertiary gustatory center in sunfishes is not nucleus glomerulosus. Neuroscience Letters 86:610.CrossRefGoogle Scholar
Wullimann, M. F. 1997. The central nervous system. Functional anatomy and phylogeny of central nervous sensory, motor, and integrative systems in fishes. In Evans, D. H., ed. The physiology of fishes. CRC, Boca Raton, Fla. (in press).Google Scholar
Wullimann, M. F., and Meyer, D. L. 1990. Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish. Brain, Behavior and Evolution 36:1429.CrossRefGoogle Scholar
Wullimann, M. F., and Northcutt, R. G. 1988. Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain, Behavior and Evolution 32:293316.CrossRefGoogle ScholarPubMed
Wullimann, M. F., and Northcutt, R. G. 1990. Visual and electrosensory circuits of the diencephalon in mormyrid fish: an evolutionary perspective. Journal of Comparative Neurology 297:537552.CrossRefGoogle Scholar
Wullimann, M. F., and Roth, G. 1992. Is the nucleus corticalis of teleosts a new cholinergic central nervous system for vertebrates? NeuroReport 3:3335.CrossRefGoogle ScholarPubMed
Wullimann, M. F., Hofmann, M. H., and Meyer, D. L. 1991. Histochemical, connectional and cytoarchitectonic evidence for a secondary reduction of the pretectum in the European eel, Anguilla anguilla: a case of parallel evolution. Brain, Behavior and Evolution 38:290301.CrossRefGoogle ScholarPubMed
Wullimann, M. F., Meyer, D. L., and Northcutt, R. G. 1991. The visually related posterior pretectal nucleus in the non-percomorph teleost Osteoglossum bicirrhosum projects to the hypothalamus: a DiI study. Journal of Comparative Neurology 312:415435.CrossRefGoogle Scholar
Yoshimoto, M., and Ito, H. 1993. Cytoarchitecture, fiber connections and ultrastructure of the nucleus pretectalis superficialis pars magnocellularis (PSm) in carp. Journal of Comparative Neurology 336:433446.CrossRefGoogle ScholarPubMed