Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T13:17:03.807Z Has data issue: false hasContentIssue false

Laurussian land-plant diversity during the Silurian and Devonian: mass extinction, sampling bias, or both?

Published online by Cambridge University Press:  08 February 2016

Anne Raymond
Affiliation:
Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843
Cheryl Metz
Affiliation:
Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843

Abstract

In phytogeographic data sets, the number of assemblages or floras from each interval may provide a test of the influence of sampling intensity on land-plant diversity. Using a data set of Silurian and Devonian compression-impression plant genera from Laurussia and the Acadian terrain, regression of five measures of land-plant diversity (total diversity, mean genus richness of floras, median assemblage diversity, most diverse assemblage, and standing diversity at interval boundaries) against the number assemblages or floras from thirteen intervals suggests that sampling bias influences all of the diversity measures to some extent, including within-habitat measures. The standing diversity of land plants at interval boundaries, the measure least influenced by sampling (r = 0.65, p = 0.05), increased steadily from the Middle Silurian to the late Givetian/early–middle Frasnian boundary, fell sharply in the early–middle Frasnian and remained low throughout the late Frasnian–middle Famennian. Standing diversity rose dramatically in the late Famennian and Strunian (latest Devonian): the Frasnian–Famennian extinction event may have affected land plants. The standing diversity of Silurian and Devonian microspore genera at interval boundaries mirrors that of compression-impression genera: neither record supports a land-plant diversity equilibrium during the Devonian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aisenverg, D. E., and Brazhnikova, N. E. 1964. Donetz Basin analogues of Etroeungt Strata. Compte Rendu. Cinquième Congrès International de Stratigraphie et de Géologie du Carbonifère Tome 1:263271.Google Scholar
Balme, B. E., and Hassell, C. W. 1962. Upper Devonian spores from the Canning Basin, Western Australia. Micropaleontology 8:128.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K., and Gilinsky, N. L. 1988. Artifacts in the apparent timing of macroevolutionary “events.” Geological Society of America Abstracts with Programs. 20:A104.Google Scholar
Banks, H. P. 1980. Floral assemblages in the Siluro-Devonian. Pp. 124in Dilcher, D. L. and Taylor, T. N., eds. Biostratigraphy of fossil plants: successional and paleoecological analyses. Dowden, Hutchinson and Ross, Stroudsburg, Penn.Google Scholar
Bell, W. A. 1960. Mississippian Horton Group of type Windsor-Horton District, Nova Scotia. Geological Survey of Canada Memoir 314:157.Google Scholar
Boulter, M. C., Spicer, R. A., and Thomas, B. A. 1988. Patterns of plant extinction from some palaeobotanical evidence. Pp. 136in Larwood, G. P., ed. Extinction and survival in the fossil record, Systematics Association Special Volume no. 34. Clarendon, Oxford.Google Scholar
Bridge, J. S., Van Veen, P. M., and Matten, L. C. 1980. Aspects of the sedimentology, palynology and paleobotany of the Upper Devonian of southern Kerry Head, Co. Kerry, Ireland. Geological Journal 15:143170.CrossRefGoogle Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:143150.CrossRefGoogle Scholar
Cross, A. T., and Hoskins, J. H. 1952. The Devonian–Mississippian transition flora of east-central United States. Compte Rendu. Trosième Congrès pour l'avancement des études de Stratigraphie et de Géologie du Carbonifère Tome 1:113122.Google Scholar
Dix, E. 1931. The Millstone Grit of Gower. Geological Magazine 68:529543.CrossRefGoogle Scholar
Dix, E. 1933. The succession of fossil plants in the Millstone Grit and the lower portion of the Coal Measures of the South Wales Coalfield (near Swansea) and a comparison of that with other areas. Palaeontographica Abteilung B Band 78:158202.Google Scholar
Edwards, D. 1990. Constraints on Silurian and Early Devonian phytogeographic analysis based on megafossils. Pp. 233242in McKerrow, W. S. and Scotese, C. R., eds. Palaeozoic palaeogeography and biogeography, Geological Society memoir no. 12. The Geological Society, London.Google Scholar
Edwards, D., and Davies, M. S. 1990. Interpretations of early land plant radiations: “facile adaptationist guesswork” or reasoned speculation? Pp. 351376in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations, Systematics Association Special Volume 42. Clarendon, Oxford.Google Scholar
Edwards, D., and Feehan, J. 1980. Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature (London) 287:4142.CrossRefGoogle Scholar
Fairon-Demaret, M. 1986. Some uppermost Devonian megafloras: a stratigraphical review. Annales de la Société Géologique de Belgique 109:4348.Google Scholar
Gerrienne, P. 1983. Les plantes Emsiennes de Marchin (Vallée du Hoyoux, Belgique). Annales de la Société Géologique de Belgique 106:1935.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press.Google Scholar
Harper, C. W. 1975. Standing diversity of fossil groups in successive intervals of geologic time: a new measure. Journal of Paleontology 49:752757.Google Scholar
Holland, C. H. 1981. A geology of Ireland. Wiley and Sons, New York.Google Scholar
Jablonski, D. 1986. Evolutionary consequences of mass extinctions. Pp. 313330in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Dahlem Konferenzen 1984. Springer, New York.CrossRefGoogle Scholar
Kidston, R., and Lang, W. H. 1917-1921. On Old Red Sandstone plants showing structure from the Rhynie Chert bed, Aberdeenshire. Parts I-V. Transactions of the Royal Society of Edinburgh 51:761784; 52:603-627; 52:643-680; 52:831-854; 52:855-902.CrossRefGoogle Scholar
Knoll, A. H. 1986. Patterns of change in plant communities through geological time. Pp. 126141in Diamond, J. and Case, T. J., eds. Community ecology. Harper and Row, New York.Google Scholar
Knoll, A. H., and Niklas, K. J. 1987. Adaptation, plant evolution, and the fossil record. Review of Palaeobotany and Palynology 50:127149.CrossRefGoogle ScholarPubMed
Knoll, A. H., Niklas, K. J., and Tiffney, B. H. 1979. Phanerozoic land plant diversity in North America. Science 206:14001402.CrossRefGoogle ScholarPubMed
Knoll, A. H., Niklas, K. J., Gensel, P. G., and Tiffney, B. H. 1984. Character diversification and patterns of evolution in early vascular land plants. Paleobiology 10:3447.CrossRefGoogle Scholar
Koch, C. F., and Morgan, J. P. 1988. On the expected distribution of species' ranges. Paleobiology 14:126138.CrossRefGoogle Scholar
Lessuise, A., and Fairon-Demaret, M. 1980. Le gisement à plantes de Niaster (Aywaille, Belgique): repère biostratigraphique nouveau aux abords de la limite Couvinien-Givetien. Annales de la Société Géologique de Belgique 103:157181.Google Scholar
Li, X.-X., and Cai, C.-Y. 1977. Early Devonian Zosterophyllum remains from southwest China. Acta Palaeontologica Sinica 16:1236.Google Scholar
Li, X.-X., and Cai, C.-Y. 1978. A type section of Lower Devonian strata in southwest China with brief notes on the succession and correlation of its plant assemblages. Acta Geologica Sinica 1:114.Google Scholar
Magdefrau, K. 1936. Die Flora des Oberdevons im ostlichen Thüringer Wald. Beihefte zum botanischen centralblatt. Abteilung B Band 56:213228.Google Scholar
Magdefrau, K. 1939. Zur Oberdevon- und Kulmflora des ostlichen Thüringer Waldes. Beitrage zur Geologie von Thüringen Band 5:213216.Google Scholar
Matten, L. C. 1974. The Givetian flora from Cairo, New York: Rhacophyton, Triloboxylon and Cladoxylon. Botanical Journal of the Linnean Society 68:303318.CrossRefGoogle Scholar
Matten, L. C., Lacey, W. S., and Lucas, R. C. 1980. Studies on the cupulate seed genus Hydrosperma Long from Berwickshire and East Lothian in Scotland and County Kerry in Ireland. Botanical Journal of the Linnean Society 81:249273.CrossRefGoogle Scholar
McGhee, G. R. Jr. 1990. Evolutionary dynamics of the Frasnian-Famennian extinction event. Pp. 2328in McMillan, N. J., Embry, A. F., and Glass, D. J., eds. Devonian of the world. Canadian Society of Petroleum Geologists Memoir 14, Volume III.Google Scholar
McGregor, D. C., Norris, A. W., and Uyeno, T. T. 1985. Intra-Devonian Series Boundaries in Canada. Courier Forschungsinstitut Senckenberg 75:157176.Google Scholar
McKerrow, W. S., Lambert, R. St. J., and Cocks, L. R. M. 1985. The Ordovician, Silurian and Devonian periods. Pp. 7380in Snelling, N. J., ed. The chronology of the geological record. Geological Society memoir no. 10. The Geological Society, London.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Evolutionary Biology 12:189.Google Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1983. Patterns in vascular land plant diversification. Nature (London) 303:614616.CrossRefGoogle Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1985. Patterns in vascular land plant diversification: an analysis at the species level. Pp. 97128in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1977. Species diversity in the Phanerozoic: systematists follow the fossils. Paleobiology 3:328329.CrossRefGoogle Scholar
Raymond, A. 1985. Floral diversity, phytogeography, and climatic amelioration during the Early Carboniferous (Dinantian). Paleobiology 11:293309.CrossRefGoogle Scholar
Raymond, A., and Metz, C. 1992. Land plants and the Frasnian-Famennian extinction event. Geological Society of America Abstracts with Programs 24:A271.Google Scholar
Read, C. B. 1955. Floras of the Pocono Formation and Price Sandstone in parts of Pennsylvania, Maryland, West Virginia, and Virginia. United States Geological Survey Professional Paper 263:132.Google Scholar
Read, C. B., and Mamay, S. H. 1964. Upper Paleozoic floral zones and floral provinces of the United States. United States Geological Survey Professional Paper 454-K:35.Google Scholar
Richardson, J. B., and McGregor, D. C. 1986. Silurian and Devonian spore zones of the Old Red Continent and adjacent regions. Geological Survey of Canada Bulletin 364.CrossRefGoogle Scholar
Scheckler, S. E. 1978. Outcrops of the Price Formation (Lower Mississippian): a guidebook for the field trip of the Paleobotany Section of the Botanical Society of America. Department of Biology, Virginia Polytechnical Institute and State University, Blacksburg.Google Scholar
Scheckler, S. E. 1984. Persistence of the Devonian plant group Barinophytaceae into the basal Carboniferous of Virginia, U.S.A. Compte Rendu. Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère Tome 2:223228.Google Scholar
Scheckler, S. E. 1986. Floras of the Devonian-Mississippian Transition. Pp. 8196in Broadhead, T. W., ed. Land plants: notes for a short course. University of Tennessee Department of Geological Sciences Studies in Geology 15. University of Tennessee, Knoxville.Google Scholar
Schmalhausen, I. 1894. On the Devonian plants of the Donetz Basin. Mémoires du Comité Géologique 8:136.Google Scholar
Schweitzer, H.-J. 1969. Die Oberdevon-Flora der Bäreninsel 2. Lycopodiinae. Palaeontographica Abteilung B Band 126:101137.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 4:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Global bioevents and the question of periodicity. Pp. 4761in Walliser, O., ed. Lecture notes in earth sciences. Vol. 8. Global Bioevents. Springer, New York.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature (London) 293:435437.CrossRefGoogle Scholar
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325328.CrossRefGoogle Scholar
Simpson, G. G., Roe, A., and Lewontin, R. C. 1960. Quantitative zoology. Harcourt, Brace, New York.Google Scholar
Stockmans, F. 1940. Végétaux Éodevonien de la Belgique. Mémoires Musée Royale de l'Histoire Naturelle de la Belgique 93:190.Google Scholar
Stockmans, F. 1948. Végétaux du Dévonien Supérieur de la Belgique. Mémoires Musée Royale de l'Histoire Naturelle de la Belgique 110:185.Google Scholar
Streel, M., and Traverse, A. 1978. Spores from the Devonian/Mississippian transition near the Horseshoe Curve section, Altoona, Pennsylvania, U.S.A. Review of Paleobotany and Palynology 26:2139.CrossRefGoogle Scholar
Tiffney, B. H. 1981. Diversity and major events in the evolution of land plants. Pp. 193230in Niklas, K. J., ed. Paleobotany, paleoecology and evolution 2. Praeger, New York.Google Scholar
Tiffney, B. H., and Niklas, K. J. 1990. Continental area, dispersion, latitudinal distribution, and topographic variety: a test of correlation with terrestrial plant diversity. Pp. 76102in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press.Google Scholar
Tims, J. D., and Chambers, T. C. 1984. Rhyniophytina and Trimerophytina from the early land floras of Victoria, Australia. Palaeontology 27:265279.Google Scholar
Yurina, A. L. 1969. Devonskaia flora Tsentral'nogo Kazakhstana. Materialy po geologii Tsentral'nogo Kazakhstana Tom 8. Moscovskii Gosudarstvennyi Universitet, Tsentral'nogo-Kazakhstanskoe Geologicheskoe Upralenie Ministerstva Geologii i Okhrany Nedr Kazakhskoi SSR.Google Scholar
Ziegler, A. M., Bambach, R. K., Parrish, J. T., Barrett, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A., and Sepkoski, J. J. Jr. 1981. Paleozoic biogeography and climatology. Pp. 231266in Niklas, K. J., ed. Paleobotany, paleoecology and evolution 2. Praeger, New York.Google Scholar