Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T10:23:59.293Z Has data issue: false hasContentIssue false

A kill curve for Phanerozoic marine species

Published online by Cambridge University Press:  08 February 2016

David M. Raup*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637

Abstract

A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to limit choices of extinction mechanisms.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Foote, M. J. 1988. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology 14:258271.CrossRefGoogle Scholar
Gumbel, E. J. 1957. Statistics of Extremes. Columbia University Press; New York.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1989. A Geologic Time Scale 1989. Cambridge University Press; Cambridge.Google Scholar
Howell, B. F. Jr. 1979. Earthquake risk in eastern Pennsylvania. Earth and Mineral Sciences 48:6364.Google Scholar
Kennedy, W. J. 1977. Ammonite evolution. Pp. 251304. In Hallam, A. (ed.), Patterns of Evolution. Elsevier Scientific Publishing Company; Amsterdam.Google Scholar
McLaren, D. J. 1982. Frasnian-Famennian extinctions. Geological Society of America Special Paper 190:477484.CrossRefGoogle Scholar
Müller, A. H. 1961. Grossabläufe der Stammesgeschichte. Gustav Fischer Verlag; Jena.Google Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology 26:371385.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology 4:115.CrossRefGoogle Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217218.CrossRefGoogle ScholarPubMed
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.CrossRefGoogle Scholar
Raup, D. M. 1988. Changing views of natural catastrophe. Pp. 577. In Adler, M. J. (ed.), Great Ideas Today (1988). Encyclopaedia Britannica; Chicago.Google Scholar
Raup, D. M.In Press. Impact as a general cause of extinction: a feasibility test. Geological Society of America Special Paper 247.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Rickards, R. B. 1977. Patterns of evolution in the graptolites. Pp. 333358. In Hallam, A. (ed.), Patterns of Evolution. Elsevier Scientific Publishing Company; Amsterdam.Google Scholar
Schindewolf, O. H. 1962. Neokatastrophismus? Deutsche Geologisches Gesellschafte Zeitschrifte 114:430445.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology 51.Google Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295. In Raup, D. M., and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer; Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society of London 146:719.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1953. The Major Features of Evolution. Columbia University Press; New York.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman and Company; San Francisco.Google Scholar
Stigler, S. M. 1987. Testing hypotheses or fitting models? Pp. 147159. In Nitecki, M. H., and Hoffman, A. (eds.), Neutral Models in Biology. Oxford University Press; Oxford.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecologic structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? Journal of Paleontology 44:410415.Google Scholar
Valentine, J. W., Foin, T. C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4:5566.CrossRefGoogle Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar