Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T16:17:06.599Z Has data issue: false hasContentIssue false

Iterative changes in Lake Pannon Melanopsis reflect a recurrent theme in gastropod morphological evolution

Published online by Cambridge University Press:  08 April 2016

Dana H. Geary
Affiliation:
Department of Geology and Geophysics, 1215 West Dayton Street, University of Wisconsin, Madison, Wisconsin 53706. E-mail: [email protected]
Andrew W. Staley
Affiliation:
Department of Geology and Geophysics, 1215 West Dayton Street, University of Wisconsin, Madison, Wisconsin 53706. E-mail: [email protected]
Pál Müller
Affiliation:
Geological Institute of Hungary, H-1143 Budapest, Stefánia út 14, Hungary
Imre Magyar
Affiliation:
Department of Geology and Geophysics, 1215 West Dayton Street, University of Wisconsin, Madison, Wisconsin 53706. E-mail: [email protected]

Abstract

Iterative evolutionary changes are of special interest because they imply that the recurring morphological changes had a cause that also repeated itself and might therefore be possible to uncover. We describe a set of iterative morphological changes in melanopsid gastropods from the ancient, long-lived Lake Pannon. First in the Pannonian Age, and again in the Pontian Age approximately three million years later, a smooth-shelled ancestor gave rise to a shouldered descendant. In both cases, the morphological change was probably coincident with a shift from habitats just outside the lake (e.g., rivers and streams) to habitats within the lake itself. Many other convergent examples exist in which a smooth-shelled river dweller is closely related to a shouldered and/or ribbed lacustrine snail. The frequency of this type of morphological change suggests that it has an adaptive basis; response to differing predators or hydrodynamic conditions seem the most plausible explanations, but the functional nature of these morphological changes remains unknown.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, C. C. 1915. The variations and ecological distribution of the snails of the genus Io. Memoirs Academy Natural Science 12:7184.Google Scholar
Allmon, W. D., and Geary, D. H. 1986. A pattern of homeomorphy in diverse lineages of gastropods. Fourth North American Paleontological Convention, Abstracts with programs, p. A1.Google Scholar
Antonovics, J., and van Tienderen, P. H. 1991. Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology and Evolution 6:166168.Google Scholar
Bandel, K. 2000. Speciation among the Melanopsidae (Caenogastropoda). Mitteilungen Geologische-Paläontologische Institüt Universitat Hamburg. Heft 84:131208.Google Scholar
Bayer, U., and McGhee, G. R. Jr. 1984. Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:116.Google Scholar
Bayer, U., and McGhee, G. R. Jr. 1985. Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors (Ammonite replacements in the German Lower and Middle Jurassic). Pp. 164220in Bayer, and Seilacher, 1985.Google Scholar
Bayer, U., and Seilacher, A., eds. 1985. Sedimentary and evolutionary cycles. Springer, New York.Google Scholar
Brusina, S. 1897. Iconographia molluscorum fossilium in tellure Tertiaria (Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzegovinae, Serbiae et Bulgariae inventorum.), Atlas II. Yugoslav Academny of Sciences and Arts, Zagreb.Google Scholar
Brusina, S. 1902. Iconographia molluscorum fossilium in tellure Tertiaria Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzegovinae et Bulgariae inventorum. Zagreb.Google Scholar
Chambers, S. M. 1982. Chromosomal evidence for parallel evolution of shell sculpture pattern in Goniobasis. Evolution 36:113120.Google Scholar
Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology 110:155171.Google Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic Foraminifera. Systematic Zoology 18:154168.CrossRefGoogle Scholar
Elston, D. P., Lantos, M., Hámor, T. 1994. High resolution polarity records and the stratgraphic and magnetostratigraphic correlation of Late Miocene and Pliocene (Pannonian s.l.) deposits of Hungary. Pp. 111142in Teleki, P. G., Mattick, R. E., and Kókai, J., eds. Basin analysis in petroleum exploration: a case study from the Békés basin, Hungary. Kluwer Academic, Dordrecht.Google Scholar
Esu, D., and Girotti, O. 1989. Late Miocene and Early Pliocene continental and oligohaline molluscan faunas of Italy. Bollettino della Società Paleontologica Italiana 28:253263.Google Scholar
Geary, D. H. 1990. Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda; Melanopsidae). Paleobiology 16:492511.Google Scholar
Geary, D. H. 1992. An unusual pattern of divergence between two fossil gastropods: ecophenotypy, dimorphism, or hybridization? Paleobiology 18:93109.CrossRefGoogle Scholar
Geary, D. H., Rich, J. A., Valley, J. W., and Baker, K. 1989. Isotopic evidence for salinity changes in the Late Miocene Pannonian Basin: effects on the evolutionary radiation of melanopsid gastropods. Geology 17:981985.Google Scholar
Givnish, T. J. 1997. Adaptive radiation and molecular systematics: issues and approaches. Pp. 154in Givnish, T. J. and Sytsma, K. J., eds. Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge.Google Scholar
Goodrich, C. 1937. Studies of the gastropod family Pleuroceridae. VI. Occasional Papers of the Museum of Zoology, University of Michigan, No. 347.Google Scholar
Gorthner, A., and Meier-Brook, C. 1985. The Steinheim basin as a paleo-ancient lake. Pp. 322334in Bayer, and Seilacher, 1985.Google Scholar
Gould, S. J. 1968. Ontogeny and the explanation of form—an allometric analysis. Paleontological Society Memoir 2 (Suppl. to Journal of Paleontology 42):8193.Google Scholar
Gould, S. J. 1984. Morphological channeling by structural constraint—convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery of the largest Cerion. Paleobiology 10:172194.CrossRefGoogle Scholar
Gould, S. J. 1989. A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43:516539.Google Scholar
Gould, S. J., and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London B 205:581598.Google Scholar
Grehan, J. R., and Ainsworth, R. 1985. Orthogenesis and evolution. Systematic Zoology 34:174192.Google Scholar
Haas, O. 1942. Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. Journal of Paleontology 16:643650.Google Scholar
Horváth, F., Cloetingh, S., and Tari, G. 1995. Stress-induced late stage subsidence anomalies of the Pannonian Basin. In Horváth, F., Tari, G., and Bokor, C., eds. Hungary: extensional collapse of the Alpine orogene and hydrocarbon prospects in the basement and basin fill of the western Pannonian Basin. AAPG International Conference and Exhibition, Nice, Field Trip Notes 6:4760.Google Scholar
Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D., and Serra, L. 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308309.Google Scholar
Jacobs, D. K., Landman, N. H., and Chamberlain, J. A. 1994. Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905908.Google Scholar
Jiricek, R. 1990. Pontien in der Tschechoslowakei. Pp. 276284in Stevanovic, et al. 1990.Google Scholar
Juhász, G. 1992. Lithostratigraphical and sedimentological framework of the Pannonian (s.l.) sedimentary sequence in the Hungarian Plain (Alföld), Eastern Hungary. Acta Geologica Hungarica 34:5372.Google Scholar
Kázmér, M. 1990. Birth, life and death of the Pannonian lake. Palaeogeography, Palaeoclimatology, Palaeoecology 79:171188.Google Scholar
Landman, N. H. 1989. Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95117.Google Scholar
Magyar, I., Geary, D. H., Sütõ-Szentai, M., Lantos, M., and Müller, P. 1999a. Integrated bio-, magneto- and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geologica Hungarica 42:532.Google Scholar
Magyar, I., Geary, D. H., and Müller, P. 1999b. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 147:151167.Google Scholar
Marinescu, F., Olteanu, R., Rogge-Taranu, E., and Popescu, A. 1977. Le Pannonien du Banat. Dari de Seama ale Sedintelor, series 3, 63:65133.Google Scholar
Martens, K., Coulter, G., and Goddeeris, B. 1994. Speciation in ancient lakes: 40 years after Brooks. Pp. 7596in Martens, K., Goddeeris, B., and Coulter, G., eds. Speciation in ancient lakes. Archiv für Hydrobiologie, Ergebnisse der Limnologie Heft 44.Google Scholar
Mátyás, J., Burns, S. J., Müller, P., and Magyar, I. 1996. What can stable isotopes say about salinity? An example from the Late Miocene Pannonian Lake. Palaios 11:3139.Google Scholar
Maynard Smith, J., Burian, R.Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. 1985. Developmental constraints and evolution. Quarterly Review of Biology 60:265287.Google Scholar
Meier-Brook, C. 1979. The planorbid genus Gyraulus in Eurasia. Malacologia 18:6772.Google Scholar
Meier-Brook, C. 1983. Taxonomic studies on Gyraulus (Gastropoda: Planorbidae). Malacologia 24:1113.Google Scholar
Müller, P., and Magyar, I. 1992. Continuous record of the evolution of lacustrine cardiid bivalves in the late Miocene Pannonian Lake. Acta Palaeontologica Polonica 36:353372.Google Scholar
Müller, P., Geary, D. H., Magyar, I. 1999. The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family-level taxonomic review. Lethaia 32:4760.Google Scholar
Nagymarosy, A., and Müller, P. 1988. Some aspects of Neogene biostratigraphy in the Pannonian basin. In Royden, L. and Horváth, F., eds. The Pannonian Basin: a study in basin evolution. AAPG Memoir 45:6977. American Association of Petroleum Geologists, Tulsa, Okla.Google Scholar
Norris, R. D. 1991. Parallel evolution in the keel structure of planktonic foraminifera. Journal of Foraminiferal Research 21:319331.Google Scholar
Palmer, A. R. 1982. Predation and parallel evolution: recurrent parietal plate reduction in balanomorph barnacles. Paleobiology 8:3144.Google Scholar
Papp, A. 1951. Die Molluskenfauna des Pannon im Wiener Becken. Mitteilungen der Geologischen Gesellschaft in Wien 44:85222.Google Scholar
Papp, A. 1979. Zur Kenntnis neogener Süsswasserfaunen in Attika (Griechenland). Annals Géologique Pays Hellenique 29:664678.Google Scholar
Papp, A., Marinescu, F., and Senes, J., eds. 1974. Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band IV. M5, Sarmatien. VEDA, Bratislava.Google Scholar
Papp, A., Jámbor, Á., and Steininger, F. F., eds. 1985. Chronostratigraphie und Neostratotypen: Miozän der Zentralen Paratethys, Band VII. M6, Pannonien. Akadémiai Kiadó, Budapest.Google Scholar
Pigliucci, M., and Kaplan, J. 2000. The fall and rise of Dr Pangloss: adaptationism and the Spandrels paper 20 years later. Trends in Ecology and Evolution 15:6670.Google Scholar
Raff, R. A. 1996. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago.Google Scholar
Raup, D. M., and Stanley, S. M. 1978. Principles of paleontology, 2d ed.W. H. Freeman, San Francisco.Google Scholar
Rögl, F. 1998. Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annals Naturhistorisches Museum Wien 99A:279310.Google Scholar
Rögl, F., and Daxner-Höck, G. 1996. Late Miocene Paratethys Correlations. Pp. 4755in Bernor, R. L., Fahlbusch, V., and Mittmann, H.-W., eds. The evolution of western Eurasian Neogene mammal faunas. Columbia University Press, New York.Google Scholar
Rögl, F., and Steininger, F. F. 1983. Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Paläogeographie und Palinspastik des zirkum- mediterranen Raumes. Annals Naturhistorisches Museum Wien 85A:135163.Google Scholar
Ruggieri, G. 1967. The Miocene and later evolution of the Mediterranean Sea. In Adams, C. G. and Ager, D. V., eds. Aspects of Tethyan biogeography. Systematics Association Publication 7:283290. London.Google Scholar
Rundle, H. D., Nagel, L., Wenrick Boughman, J., and Schluter, D. 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287:306308.Google Scholar
Rust, J. 1997. Evolution, Systematik, Paläoökologie und stratigraphischer Nutzen Neogener Süss- und Brackwasser-Gastropoden im Nord-Ägäis-Raum. Palaeontographica, Abteilung A 243:37180.Google Scholar
Sacchi, M., Tonielli, R., Cserny, T., Dövényi, P., Horváth, F., Magyari, O., McGee, T. M., and Mirabile, L. 1998. Seismic stratigraphy of the Late Miocene sequence beneath Lake Balaton, Pannonian Basin, Hungary. Acta Geologica Hungarica 41:6388.Google Scholar
Schindewolf, O. H. 1950. Grundfragen der Paläontologie. Schweizerbart'sche Verlagbuchhandlung, Stuttgart.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27:207237.Google Scholar
Sörhannus, U., Fenster, E. J., Hoffman, A., and Burckle, L. 1991. Iterative evolution in the diatom genus Rhizosolenia Ehrenberg. Lethaia 24:3944.Google Scholar
Stearns, S. C. 1986. Natural selection and fitness, adaptation and constraint. Pp. 2344in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.Google Scholar
Stevanovic, P. M., Nevesskaja, L. A., Marinescu, F., Sokac, A., and Jámbor, Á., eds. 1990. Chronostratigraphie und Neostratotypen: Neogen der Westlichen (“Zentrale”) Paratethys, Band VIII. PL1, Pontien. JAZU and SANU, Zagreb-Belgrade.Google Scholar
Stoliczka, F. 1862. Beitrage zur Kenntnis der Molluskenfauna der Cerithien- und Inzersdorfer Schichten des ungarischen Tertiärbeckens. Verhandlung Zoologisches Botanisches Gesellschaft Wien No. 12.Google Scholar
Strausz, L. 1942. Das Pannon des Mittleren Westungarns. Annales Historico-Naturales, Musei Nationalis Hungarici, XXXV, Pars Mineralogie Geologie Palaeontologie1102.Google Scholar
Vakarcs, G., Vail, P. R., Tari, G., Pogácsás, G., Mattick, R. E., and Szabó, A. 1994. Third-order Middle Miocene–Early Pliocene depositional sequences in the prograding delta complex of the Pannonian basin. Tectonophysics 240:81106.Google Scholar
Van Valkenburgh, B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17:340362.Google Scholar
Vermeij, G. J. 1978. Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge.Google Scholar
Vermeij, G. J., and Covich, A. P. 1978. Coevolution of freshwater gastropods and their predators. American Naturalist 112:833843.Google Scholar
West, K., and Cohen, A. 1994. Predator-prey coevolution as a model for the unusual morphologies of the crabs and gastropods of Lake Tanganyika. In Martens, K., Goddeeris, B., and Coulter, G., eds. Speciation in ancient lakes. Archiv für Hydrobiologie, Ergebnisse der Limnologie Heft 44:267283.Google Scholar
West, K., Cohen, A., and Baron, M. 1991. Morphology and behavior of crabs and gastropods from Lake Tanganyika, Africa: implications for lacustrine predator-prey coevolution. Evolution 45:589607.Google Scholar
Willmann, R. 1985. Responses of the Plio-Pleistocene freshwater gastropods of Kos (Greece, Aegean Sea) to environmental changes. Pp. 295321in Bayer, and Seilacher, 1985.Google Scholar
Zoch, W. 1940. Die stammesgeschichtliche Gestaltung der Doggerbelemniten Schwabens und ein Vergleich mit Lias- und Kreidebelemniten. Neues Jahrbuch Beilage-Band 83, Abteilung B, Fasc. 3.Google Scholar