Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T11:06:28.092Z Has data issue: false hasContentIssue false

Information landscapes and sensory ecology of the Cambrian Radiation

Published online by Cambridge University Press:  08 April 2016

Roy E. Plotnick
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607. E-mail: [email protected]
Stephen Q. Dornbos
Affiliation:
Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
Junyuan Chen
Affiliation:
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

Organisms emit, detect, and respond to a huge array of environmental signals. The distribution of a given signal is dependent, first of all, upon the original spatial distribution of signal sources, the source landscape. The signal sources can be fixed or moving and their output can be stable or ephemeral. Different sources can also occupy the same general spatial location, such as insects living on a host plant. The emitted signals are modified by relevant transport processes, which are often strongly scale and environment dependent. Chemical signals, for example, are propagated by diffusion and turbulence. The resulting complex, three-dimensional, and dynamic distribution of signals in the environment is the signal landscape; it is the environment of potentially available information in which sensory systems function and have evolved. Organisms also differ widely in what signals they can actually detect; the distribution of signals that an organism can potentially respond to is its information landscape. Although increasing the kinds and specificity of signals that can be detected and processed can lead to improved decision making, it almost always comes at an increased cost. The greater the spatial and temporal complexity of the environment, the greater are the costs of incomplete information and the more advantageous is the development of improved information-gathering capabilities. Studies with simulation models suggest how variability in the spatial structure of source and signal landscapes may control patterns of animal movement that could be represented in the trace fossil record. Information landscapes and the corresponding sensory systems should have evolved in concert with major transitions in the history of life. The Ediacaran to Cambrian interval is one of the most intensively studied periods in the history of life, characterized by the profound environmental and biological changes associated with the bilaterian radiation. These include the advent of macroscopic predation, an increase in the size and energy content of organisms, and the transition in seafloors from laminated matgrounds to mixgrounds produced by the development of macroscopic infaunal bioturbation. The overall effect of these transitions was to markedly increase the spatial complexity of the marine environment. We suggest that this increased spatial complexity, in turn, drove the evolution of macroscopic sense organs in mobile bilaterians, leading to their first appearance during the Cambrian. The morphology and distribution of these sense organs should reflect the life habits of the animals that possessed them. Our overall hypothesis was that there was a “Cambrian Information Revolution,” a coevolutionary increase in the information content of the marine environment and in the ability of and necessity for organisms to obtain and process this information. A preliminary analysis of the Maotianshan Shale (Chengjiang) biota indicates that the distribution of eyes and antennae in these animals is consistent with predictions based on their life habit.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ache, B. W., and Young, J. M. 2005. Olfaction: diverse species, conserved principles. Neuron 48:417430.CrossRefGoogle ScholarPubMed
Atema, J. 1996. Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biological Bulletin 191:129138.CrossRefGoogle ScholarPubMed
Babcock, L. E. 1993. Trilobite malformations and the fossil record of behavioral asymmetry. Journal of Paleontology 67:217229.CrossRefGoogle Scholar
Babcock, L. E. 2003. Trilobites in Paleozoic predator-prey systems, and their role in reorganization of Early Paleozoic ecosystems. Pp. 5592 in Kelley, P. H., Kowalewski, M., and Hansen, T. A., eds. Predator-prey interactions in the fossil record. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Babcock, L. E., Peng, S. C., Geyer, G., and Shergold, J. H. 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geosciences Journal 9:101106.CrossRefGoogle Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19:372397.CrossRefGoogle Scholar
Beddingfield, S. D., and McClintock, J. B. 1993. Feeding-behavior of the sea star Astropecten articulatus (Echinodermata, Asteroidea): an evaluation of energy-efficient foraging in a soft-bottom predator. Marine Biology 115:669676.CrossRefGoogle Scholar
Bengtson, S. 2002. Origins and early evolution of predation. Pp. 289318 in Kowalewski, and Kelley, 2002.Google Scholar
Bengtson, S., and Zhao, Y. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257:367369.CrossRefGoogle ScholarPubMed
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today 10:17.Google Scholar
Brett, C. E., and Walker, S. E. 2002. Predators and predation in Paleozoic marine environments. Pp. 93118 in Kowalewski, and Kelley, 2002.Google Scholar
Brewer, R., and Konar, B. 2005. Chemosensory responses and foraging behavior of the seastar Pycnopodia helianthoides . Marine Biology 147:789795.CrossRefGoogle Scholar
Brey, T. 2001. Population dynamics in benthic invertebrates: a virtual handbook, Version 01.2. http://www.thomas-brey.de/science/virtualhandbook Google Scholar
Briggs, D. E. G., and Fortey, R. A. 2005. Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31:94112.CrossRefGoogle Scholar
Budd, G. E. 2008. The earliest fossil record of the animals and its significance. Philosophical Transactions of the Royal Society of London B 363:14251434.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology 23:247262.CrossRefGoogle Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Caron, J. B. 2005. Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale. Transactions of the Royal Society of Edinburgh 96:95111.CrossRefGoogle Scholar
Caron, J. B., and Jackson, D. A. 2008. Paleoecology of the greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology 258:222256.CrossRefGoogle Scholar
Chen, J. 2004. The dawn of the animal world. Jiangsu Publishing House of Science and Technology, Nanjing.Google Scholar
Chen, J. 2008. Early crest animals and the insight they provide into the evolutionary origin of craniates. Genesis 4:623639.CrossRefGoogle Scholar
Chen, J. 2009. The sudden appearance of diverse animal body plans during the Cambrian explosion. International Journal of Developmental Biology 53:733751.CrossRefGoogle ScholarPubMed
Chen, J., and Zhou, G. 1997. Biology of the Chengjiang fauna. Pp. 11106 in Chen, J., Cheng, Y., and Van Iten, H., eds. The Cambrian explosion and the fossil record. National Museum of Natural Science, Taichung, Taiwan. Google Scholar
Chen, J., Huang, D.-Y., and Bottjer, D. J. 2005. An Early Cambrian problematic fossil: Vetustovermis and its possible affinities. Proceedings of the Royal Society of London B 272:20032007.Google ScholarPubMed
Chen, J., Waloszek, D., Maas, A., Braun, A., Huang, D.-Y., Wang, X.-Q., and Stein, M. 2007. Early Cambrian Yangtze Plate Maotianshan-shale macrofauna biodiversity and the evolution of predation. Palaios 254:250272.Google Scholar
Clarkson, E., Levi-Setti, R., and Horvath, G. 2006. The eyes of trilobites: the oldest preserved visual system. Arthropod Structure and Development 35:247259.CrossRefGoogle ScholarPubMed
Morris, S. Conway 1986. The community structure of the middle Cambrian phyllopod bed (Burgess Shale). Palaeontology 29:423467.Google Scholar
Morris, S. Conway 2003. On the first day, God said.. American Scientist 91:365.Google Scholar
Cronin, T. W. 1986. Photoreception in marine invertebrates. American Zoologist 26:403415.CrossRefGoogle Scholar
Dall, S. R. X., Giraldeau, L. A., Olsson, O., McNamara, J. M., and Stephens, D. W. 2005a. Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution 20:187193.CrossRefGoogle ScholarPubMed
Dall, S. R. X., Lotem, A., Winkler, D. W., Bednekoff, P. A., Laland, K. N., Coolen, I., Kendal, R., Danchin, E., Giraldeau, L.-A., Valone, T. J., and Wagner, R. H. 2005b. Defining the concept of public information. Science 308:353356.CrossRefGoogle ScholarPubMed
Danchin, E., Giraldeau, L.-A., Valone, T. J., and Wagner, R. H. 2004. Public information: from nosy neighbors to cultural evolution. Science 305:487491.CrossRefGoogle ScholarPubMed
Dornbos, S. Q., and Chen, J. 2008. Community palaeoecology of the Early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeography, Palaeoclimatology, Palaeoecology 258:200212.CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology 16:233236.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., and Finnegan, S. 2003. The Ordovician Radiation: a follow-up to the Cambrian explosion? Integrative and Comparative Biology 43:178184.CrossRefGoogle Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. 1999. When the worm turned: concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia. Geology 27:325328.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., Jensen, S., Gehling, J. G., Myrow, P. M., and Narbonne, G. M. 2002. Lowermost Cambrian ichnofabrics from the Chapel Island Formation, Newfoundland: implications for Cambrian substrates. Palaios 17:315.2.0.CO;2>CrossRefGoogle Scholar
Dukas, R. 2002. Behavioural and ecological consequences of limited attention. Philosophical Transactions of the Royal Society of London B 357:15391547.CrossRefGoogle ScholarPubMed
Dusenbury, D. B. 1992. Sensory ecology: how organisms acquire and respond to information. W. H. Freeman, New York.Google Scholar
Dzik, J. 2003. Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan. Palaeontology 46:93112.CrossRefGoogle Scholar
Dzik, J. 2005. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion.” Paleobiology 31:503521.CrossRefGoogle Scholar
Elofsson, R. 2006. The frontal eyes of crustaceans. Arthropod Structure and Development 35:275291.CrossRefGoogle ScholarPubMed
Erwin, D. H. 2003. Review of “In the blink of an eye,” by Andrew Parker. Quarterly Review of Biology 78:469470.CrossRefGoogle Scholar
Erwin, D. H. 2005. The origin of animal body plans. Pp. 6780 in Briggs, D. E. G., ed. Evolving form and function: fossils and development. Peabody Museum of Natural History, Yale University, New Haven, Conn. Google Scholar
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. Geological Society of London Special Publication 286:157179.CrossRefGoogle Scholar
Feigenbaum, D. L., and Maris, R. C. 1984. Feeding in the Chaetognatha. Oceanography and Marine Biology 22:343392.Google Scholar
Fernald, R. D. 2004. Eyes: variety, development and evolution. Brain, Behavior and Evolution 64:141147.CrossRefGoogle ScholarPubMed
Fortey, R. A., and Owens, R. M. 1999 Feeding habits in trilobites. Palaeontology 42:429–65.CrossRefGoogle Scholar
Frye, M. A., Tarsitano, M., and Dickinson, M. H. 2003. Odor localization requires visual feedback during free flight in Drosophila melanogaster . Journal of Experimental Biology 206:843855.CrossRefGoogle ScholarPubMed
Gardiner, J. M., and Atema, J. 2007. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. Journal of Experimental Biology 210:19251934.CrossRefGoogle ScholarPubMed
Gilbert, C., and Kuenen, L. P. S. 2008. Multimodal integration: visual cues help odor-seeking fruit flies. Current Biology 18:R295R297.CrossRefGoogle ScholarPubMed
Goyret, J., Markwell, P. M., and Raguso, R. A. 2007. The effect of decoupling olfactory and visual stimuli on the foraging behavior of Manduca sexta . Journal of Experimental Biology 210:13981405.CrossRefGoogle ScholarPubMed
Hagadorn, J. W., and Bottjer, D. J. 1997. Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology 25:10471050.2.3.CO;2>CrossRefGoogle Scholar
Hagadorn, J. W., and Bottjer, D. J. 1999. Restriction of a Late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14:7385.CrossRefGoogle Scholar
Holland, N. D. 2003. Early central nervous system evolution: an era of skin brains? Nature Reviews Neuroscience 4:617627.CrossRefGoogle ScholarPubMed
Hou, X.-G., Bergström, J., Wang, H.-F., Feng, X.-H., and Chen, A.-L. 1999. The Chengjiang Fauna: exceptionally well-preserved animals from 530 million years ago. Yunnan Science and Technology Press, Kumning.Google Scholar
Hou, X., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., Feng, X. 2004. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell, Oxford.Google Scholar
Hu, S.-X. 2005. Taphonomy and palaeoecology of the early Cambrian Chengjiang biota from eastern Yunnan, China. Berliner Paläobiologische Abhandlungen 7:1197.Google Scholar
Hu, S.-X., Steiner, M., Zhu, M.-Y., Erdtmann, B. D., Luo, H.-L., Chen, L.-Z., and Weber, B. 2007. Diverse pelagic predators from the Chengjiang Lagerstätte and the establishment of modern-style pelagic ecosystems in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology 254:307316.CrossRefGoogle Scholar
Hua, H., Pratt, B. R., and Zhang, L.-Y. 2003. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios 18:454459.2.0.CO;2>CrossRefGoogle Scholar
Jacobs, D. K., Nakanishi, N., Yuan, D., Camara, A., Nichols, S. A., and Hartenstein, V. 2007. Evolution of sensory structures in basal metazoa. Integrative and Comparative Biology 47:712723.CrossRefGoogle ScholarPubMed
Jensen, S. R., Droser, M. L., and Gehling, J. G. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology 220:1929.CrossRefGoogle Scholar
Kowalewski, M. 2002. The fossil record of predation: an overview of analytical methods. Pp. 3–2 in Kowalewski, and Kelley, 2002.Google Scholar
Kowalewski, M., and Kelley, P. H., eds. 2002. The fossil record of predation. Paleontological Society Special Papers 8.CrossRefGoogle Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284:21292137.CrossRefGoogle ScholarPubMed
Koy, K., and Plotnick, R. E. 2007. Theoretical and experimental ichnology of mobile foraging. Pp. 427440 in Miller, W. III, ed. Trace fossils: concepts, problems and prospects. Elsevier, Amsterdam.Google Scholar
Lacalli, T. C. 2004. Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain, Behavior and Evolution 64:148162.CrossRefGoogle ScholarPubMed
Land, M. F., and Nilsson, D. E. 2002. Animal eyes. Oxford University Press, Oxford.Google Scholar
Land, M. F., and Nilsson, D. E. 2006. General-purpose and special-purpose visual systems. Pp. 167210 in Warrant, E. J. and Nilsson, D. E., eds. Invertebrate vision. Cambridge University Press, New York.Google Scholar
Landing, E., Peng, S., Babcock, L. E., Geyer, G., and Moczydlowska-Vidal, M. 2007. Global standard names for the Lowermost Cambrian Series and Stage. Episodes 30:287289.CrossRefGoogle Scholar
Levinton, J. S. 2008. The Cambrian Explosion: how do we use the evidence? Bioscience 58:855864.CrossRefGoogle Scholar
Lindsay, S. M., Riordan, T. J., and Forest, D. 2004. Identification and activity-dependent labeling of peripheral sensory structures on a spionid polychaete. Biological Bulletin 206:6577.CrossRefGoogle ScholarPubMed
Ma, X., Hou, X., and Bergstrom, J. 2009. Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians. Arthropod Structure and Development 38:271291.CrossRefGoogle ScholarPubMed
Maas, A., Huang, D.-Y., Chen, J., Waloszek, D., and Braun, A. 2007. Maotianshan Shale nemathelminths: new information about their morphology and biology, and phylogeny of Nemathelminthes. Palaeogeography, Palaeoclimatology, Palaeoecology 254:285303.CrossRefGoogle Scholar
Mallatt, J., and Chen, J. 2003. Fossil sister group of craniates: predicted and found. Journal of Morphology 258:131.CrossRefGoogle ScholarPubMed
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355384.CrossRefGoogle Scholar
Moore, P., and Crimaldi, J. 2004. Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. Journal of Marine Systems 49:5564.CrossRefGoogle Scholar
Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., and Smouse, P. E. 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences USA 105:1905219059.CrossRefGoogle ScholarPubMed
Parker, A. R. 1998. Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proceedings of the Royal Society of London B 265:967972.CrossRefGoogle Scholar
Parker, A. R. 2003. In the blink of an eye. Perseus, Cambridge, Mass. Google Scholar
Pawlowski, J., and Gooday, A. J. 2009. Precambrian biota: protistan origin of trace fossils? Current Biology 19:R28R30.CrossRefGoogle ScholarPubMed
Peterson, K. J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33:929932.CrossRefGoogle Scholar
Peterson, K. J., McPeek, M. A., and Evans, D. A. D. 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency Paleobiology 31(Suppl. to No. 2):3655.CrossRefGoogle Scholar
Peterson, K. J., Cotton, J. A., Gehling, J. G., and Pisani, D. 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society of London B 363:14351443.CrossRefGoogle ScholarPubMed
Plachetzki, D. C. 2007. The origins of novel protein interactions during animal opsin evolution. PLoS ONE 2(10):e1054.CrossRefGoogle ScholarPubMed
Plotnick, R. E. 2007. Chemoreception, odor landscapes, and foraging in ancient marine landscapes. Palaeontologia Electronica 10(1).Google Scholar
Purschke, G. 2005. Sense organs in polychaetes (Annelida). Hydrobiologia 535:5378.Google Scholar
Ramsköld, L., and Edgecombe, G. D. 1996. Trilobite appendage structure of Eoredlichia reconsidered. Alcheringa 20:269276.CrossRefGoogle Scholar
Riding, R. E., and Awramik, S. M. 2000. Microbial sediments. Springer, Berlin.CrossRefGoogle Scholar
Schieber, J. 1999. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios 14:312.CrossRefGoogle Scholar
Schoenemann, B. 2006. Cambrian view. Palaeoworld 15:307314.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14:8693.CrossRefGoogle Scholar
Seilacher, A., and Pflüger, F. 1994. From biomats to benthic agriculture: a biohistoric revolution. Pp. 97105 in Krumbein, W. E., ed. Biostabilization of sediments. Bibliotheks and Informationsystem del Carl von Ossietzky Universität, Oldenburg.Google Scholar
Shu, D., and Zhang, X. 1996. Kuamaia, an Early Cambrian predator from the Chengjiang fossil Lagerstätte. Journal of Northwest University, Special Volume, pp. 2733.Google Scholar
Shu, D., Vannier, J., Luo, H.-L., Chen, L., Zhang, X., and Hu, S.-X. 1999. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (lower Cambrian; Southwest China). Lethaia 32:279298.CrossRefGoogle Scholar
Shubin, N., Tabin, C., and Carroll, S. 2008. Deep homology and the origins of evolutionary novelty. Nature 457:818823.CrossRefGoogle Scholar
Signor, P. W., and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.CrossRefGoogle Scholar
Turner, M. G. 2005. Landscape ecology: what is the state of the science? Annual Review of Ecology, Evolution, and Systematics 36:319344.CrossRefGoogle Scholar
Turner, M. G., Gardner, R. H., and O'Neill, R. V. 2001. Landscape ecology in theory and practice. Springer, New York.Google Scholar
Vannier, J., and Chen, J. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia 33:295311.CrossRefGoogle Scholar
Vannier, J., and Chen, J. 2002. Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia 35:107120.CrossRefGoogle Scholar
Vannier, J., and Chen, J. 2005. Early Cambrian food chain: new evidence from fossil aggregates in the Maotianshan Shale Biota, SW China. Palaios 20:326 CrossRefGoogle Scholar
Vannier, J., Garcia-Bellido, D. C., Hu, S. X., and Chen, A. L. 2009. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas. Proceedings of the Royal Society of London B 276:25672574.Google ScholarPubMed
Vannier, J., Steiner, M., Renvoise, E., Hu, S. X., and Casanova, J. P. 2007. Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proceedings of the Royal Society of London B 274:627633.Google ScholarPubMed
Vermeij, G. J. 2007. The ecology of invasion: acquisition and loss of the siphonal canal in gastropods. Paleobiology 33:469493.CrossRefGoogle Scholar
Vickers, N. J. 2000. Mechanisms of animal navigation in odor plumes. Biological Bulletin 198:203212.CrossRefGoogle ScholarPubMed
Waloszek, D., Maas, A., Chen, J., and Stein, M. 2007. Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeography, Palaeoclimatology, Palaeoecology 254:273287.CrossRefGoogle Scholar
Weissburg, M. J. 2000. The fluid dynamical context of chemosensory behavior. Biological Bulletin 198:188202.CrossRefGoogle ScholarPubMed
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa. Pp. 33106 in Edgecombe, G. D., ed. Arthropod fossils and phylogeny. Columbia University Press, New York.Google Scholar
Zhang, X., and Shu, D. 2007. Soft anatomy of sunellid arthropods from the Chengjiang Lagerstätte, Lower Cambrian of southwest China. Journal of Paleontology 81:14121422.CrossRefGoogle Scholar