Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T18:26:46.745Z Has data issue: false hasContentIssue false

Individuals, hierarchies and processes: towards a more complete evolutionary theory

Published online by Cambridge University Press:  08 February 2016

Elisabeth S. Vrba
Affiliation:
Transvaal Museum, P.O. Box 413, Pretoria, South Africa 0001
Niles Eldredge
Affiliation:
American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024

Abstract

Hierarchy is a central phenomenon of life. Yet it does not feature as such in traditional biological theory. The genealogical hierarchy is a nested organization of entities at ascending levels. There are phenomena common to all levels: (1) Entities such as genomic constituents, organisms, demes, and species are individuals. (2) They have aggregate characters (statistics of characters of subparts), but also emergent characters (arising from organization among subparts). Character variation changes by (3) introduction of novelty and (4) sorting by differential birth and death. Causation of introduction and sorting of variation at each level may be (5) upward from lower levels, (6) downward from higher levels, or (7) lodged at the focal level. The term “selection” applies to only one of the possible processes which cause sorting at a focal level. Neo-Darwinian explanations are too narrow, both in the levels (of genotypes and phenotypes) and in the directive process (selection) which are stressed. The acknowledgment of additional, hierarchical phenomena does not usually extend beyond lip service. We urge that interlevel causation should feature centrally in explanatory hypotheses of evolution. For instance, a ready explanation for divergence in populations is “selection of random mutants.” But upward causation from genome dynamics (or downward causation from the hierarchical organism) to the directed introduction of mutants may be more important in a given case. Similarly, a long-term trend is traditionally explained as additive evolution in populations. But sorting among species may be the cardinal factor, and the cause may not be species selection but upward causation from lower levels. A general theory of biology is a theory of hierarchical levels—how they arise and interact. This is a preliminary contribution mainly to the latter question.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P. 1980. Ontogenesis and morphological diversification. Am. Zool. 20:653667.CrossRefGoogle Scholar
Arnold, A. J. and Fristrup, K. 1982. The theory of evolution by natural selection: a hierarchical expansion. Paleobiology. 8:113129.CrossRefGoogle Scholar
Asimov, I. 1979. Extraterrestrial Civilizations. Pan; London.Google Scholar
Beckner, M. 1974. Reduction, hierarchies and organicism. Pp. 163186. In: Ayala, F. J. and Dobzhansky, T., eds. Studies in the Philosophy of Biology. Univ. California Press; San Francisco.CrossRefGoogle Scholar
Bennett, M. D. 1982. Nudeotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation. Pp. 239262. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Bock, W. J. 1959. Preadaptations and multiple evolutionary pathways. Evolution. 13:194211.CrossRefGoogle Scholar
Bock, W. J. 1979. The synthetic explanation of macroevolutionary change—a reductionist approach. Bull. Carn. Mus. Nat. Hist. 13:2069.Google Scholar
Bonner, J. T., ed. 1982. Evolution and Development, 356 pp. Springer-Verlag; New York.CrossRefGoogle Scholar
Brady, R. H. 1979. Natural selection and the criteria by which a theory is judged. Syst. Zool. 28:600621.CrossRefGoogle Scholar
Britten, R. J. 1982. Genomic alterations in evolution. Pp. 4164. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; New York.CrossRefGoogle Scholar
Byerly, H. C. 1983. Natural selection as a law: principles and processes. Am. Nat. 121:739745.CrossRefGoogle Scholar
Campbell, T. 1974. “Downward causation” in hierarchically organised biological systems. Pp. 179186. In: Ayala, F. J. and Dobzhansky, T., eds. Studies in the Philosophy of Biology. Univ. California Press; San Francisco.CrossRefGoogle Scholar
Cavalier-Smith, T. 1980. How selfish is DNA? Nature. 285:617618.CrossRefGoogle ScholarPubMed
Charlesworth, B., Lande, R., and Slatkin, M. 1982. A neo-Darwinian commentary on macroevolution. Evolution. 36:474498.Google ScholarPubMed
Clarke, P. H. 1983. Experimental evolution. Pp. 235252. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Cracraft, J. 1982. A non-equilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Syst. Zool. 31:348365.CrossRefGoogle Scholar
Davidson, E. H. 1982. Evolutionary change in genomic regulatory organization: speculations of the origins of novel biological structure. Pp. 6584. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; New York.CrossRefGoogle Scholar
Dawkins, R. 1983. Universal Darwinism. Pp. 403425. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Dickerson, R. E. 1978. Chemical evolution and the origin of life. Sci. Am. 239:6279.CrossRefGoogle ScholarPubMed
Dobzhansky, T. 1935. A critique of the species concept in biology. Philos. Sci. 2:344355.CrossRefGoogle Scholar
Dobzhansky, T. 1937. Genetics and the Origin of Species. Columbia Univ. Press; New York.Google Scholar
Dobzhansky, T., Ayala, F.J., Stebbins, R. L., and Valentine, J. W. 1977. Evolution. 572 pp. W. H. Freeman; San Francisco.Google Scholar
Doolittle, W. F. 1982. Selfish DNA after fourteen months. Pp. 328. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Doolittle, W. F. and Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature. 284:601603.CrossRefGoogle ScholarPubMed
Dover, G. A. 1980. Ignorant DNA? Nature. 285:618620.CrossRefGoogle ScholarPubMed
Dover, G. A. 1982. A molecular drive through evolution. BioScience. 32:526533.CrossRefGoogle Scholar
Dover, G. A., Brown, S., Coen, E., Dallas, J., Strachan, T., and Trick, M. 1982. The dynamics of genome evolution and species differentiation. Pp. 343372. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Dover, G. A. and Flavell, R. B., eds. 1982. Genome Evolution. 382 pp. Academic Press; London.Google Scholar
Edson, M. M., Foin, T. C., and Knapp, C. M. 1981. “Emergent properties” and ecological research. Am. Nat. 118:593596.CrossRefGoogle Scholar
Eigen, M. 1983. Self-replication and molecular evolution. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Eldredge, N. 1983. Phenomenological levels and evolutionary rates. Syst. Zool. 31:338347.CrossRefGoogle Scholar
Eldredge, N. 1985. In press. The integration of Evolutionary Theory. Univ. Chicago Press; Chicago.Google Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. 349 pp. Columbia Univ. Press; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. W. H. Freeman; San Francisco.Google Scholar
Eldredge, N. and Salthe, S. N.In press. Hierarchy and evolution. Oxford Rev. Evol. Biol.Google Scholar
Emerson, A. E. 1960. The evolution of adaptation in population systems. Pp. 307348. In: Tax, S., ed. Evolution after Darwin. Univ. Chicago Press; Chicago.Google Scholar
Finnegan, D. J., Will, B. H., Bayev, A. A., Bowcock, A. M., and Brown, L. 1982. Transposable DNA sequences in eukaryotes Pp. 2940. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Fisher, R. A. 1958. The Genetical Theory of Natural Selection. 291 pp. Dover; New York.Google Scholar
Ghiselin, M. T. 1974. A radical solution to the species problem. Syst. Zool. 25:536544.CrossRefGoogle Scholar
Gilinsky, N. L.Manuscript. Speciation, trends, and macroevolution.Google Scholar
Gillespie, D., Donehower, L., and Strayer, D. 1982. Evolution of primate DNA organization. Pp. 113134. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Goldschmidt, R. 1940. The Material Basis of Evolution. 436 pp. Yale Univ. Press; New Haven.Google Scholar
Gould, S. J. 1976. Darwin's untimely burial. Nat. Hist. 85:2430.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. 501 pp. Belknap Press; Cambridge, Massachusetts.Google Scholar
Gould, S. J. 1980. The promise of paleobiology as a nomothetic evolutionary discipline. Paleobiology. 6:96118.CrossRefGoogle Scholar
Gould, S. J. 1982a. Darwinism and the expansion of evolutionary theory. Science. 216:380387.CrossRefGoogle ScholarPubMed
Gould, S. J. 1982b. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104. In: Milkman, R., ed. Perspectives on Evolution. Sinauer; Sunderland, Massachusetts.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Gould, S. J. and Vrba, E. S. 1982. Exaptation—a missing term in the science of form. Paleobiology. 8:415.CrossRefGoogle Scholar
Grant, V. 1963. The Origin of Adaptations. 606 pp. Columbia Univ. Press; New York.Google Scholar
Grant, V. 1982. Punctuated equilibria: a critique. Biol. Zbl. 101:175184.Google Scholar
Hinegardner, R. 1976. Evolution of genome size. Pp. 179199. In: Ayala, F. J., ed. Molecular Evolution. Sinauer; Sunderland, Massachusetts.Google Scholar
Ho, M. W. and Saunders, P. T. 1982. The epigenetic approach to the evolution of organisms—with notes on its relevance to social and cultural evolution. Pp. 343361. In: Plotkin, H. C., ed. Essays in Evolutionary Epistemology. Wiley; London.Google Scholar
Horder, T. J. 1981. On not throwing the baby out with the bath water. Pp. 163180. In: Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Hunt Institute; Pittsburgh.Google Scholar
Hull, D. L. 1974. Philosophy of Biological Science. 148 pp. Prentice-Hall; Englewood Cliffs, New Jersey.Google Scholar
Hull, D. L. 1976. Are species really individuals? Syst. Zool. 25:174191.Google Scholar
Hull, D. L. 1980. Individuality and selection. Ann. Rev. Ecol. Syst. 11:311332.CrossRefGoogle Scholar
Lamotte, M. 1959. Polymorphism of natural populations of Cepaea nemoralis. Cold Spring Harbor Symp. Quant. Biol. 24:6586.CrossRefGoogle ScholarPubMed
Levins, R. 1970. Complex systems. Pp. 7388. In: Waddington, C. H., ed. Towards a Theoretical Biology. Edinburgh Univ. Press; Edinburgh.Google Scholar
Lewin, R. 1981. Do jumping genes make evolutionary leaps? Science. 213:634636.CrossRefGoogle ScholarPubMed
Lewontin, R. C. 1970. The units of selection. Ann. Rev. Ecol. Syst. 1:116.CrossRefGoogle Scholar
Lewontin, R. C. 1974. The Genetic Basis of Evolutionary Change. 346 pp. Columbia Univ. Press; New York.Google Scholar
Macgregor, H. C. 1982. Big chromosomes and speciation amongst Amphibia. Pp. 325342. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Maynard Smith, J. 1966. The Theory of Evolution. 336 pp. Penguin; Baltimore.Google Scholar
Maynard Smith, J. 1971. The origin and maintenance of sex. Pp. 163175. In: Williams, G. C., ed. Group Selection. Aldine; Chicago.Google Scholar
Maynard Smith, J. 1976. Group selection. Quar. Rev. Biol. 51:277283.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. 797 pp. Harvard Univ. Press; Cambridge, Massachusetts.CrossRefGoogle Scholar
Monroy, A. and Rosati, F. 1979. The evolution of the cell-cell recognition system. Nature. 278:165166.CrossRefGoogle ScholarPubMed
Nagel, E. 1961. The Structure of Science. 618 pp. Harcourt Brace & World; New York.Google Scholar
Orgel, L. E. 1979. Selection in vitro. Proc. R. Soc. Lond. B. 205:435442.Google ScholarPubMed
Oster, G. and Alberch, P. 1982. Evolution and bifurcation of developmental programs. Evolution. 36:444459.CrossRefGoogle ScholarPubMed
Paterson, H. E. H. 1978. More evidence against speciation by reinforcement. S. Afr. J. Sci. 74:369371.Google Scholar
Paterson, H. E. H. 1982. Perspective on speciation by reinforcement. S. Afr. J. Sci. 78:5357.Google Scholar
Pattee, H. H. 1970. The problem of biological hierarchy. Pp. 117136. In: Waddington, C. H., ed. Towards a Theoretical Biology. Edinburgh Univ. Press; Edinburgh.Google Scholar
Pauling, L. and Corey, R. B. 1951. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U.S.A. 37:251256.CrossRefGoogle Scholar
Phillips, D. C., Sternberg, M. J. E., and Sutton, B. J. 1983. Intimations of evolution from the three-dimensional structures of proteins. Pp. 145173. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Rachootin, S. P. and Thomson, K. S. 1981. Epigenetics, paleontology, and evolution. Pp. 181194. In: Scudder, G. G. E. and Reveal, J. L., eds. Evolution Today. Hunt Inst.; Pittsburgh.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. 1973. Stochastic models of phylogeney and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Riedl, R. 1978. Order in Living Organisms. 313 pp. Wiley; New York.Google Scholar
Ruse, M. 1982. Darwinism Defended. 356 pp. Addison-Wesley; Reading, Massachusetts.Google Scholar
Salt, G. W. 1979. A comment on the use of the term emergent properties. Am. Nat. 113:145148.CrossRefGoogle Scholar
Schopf, J. W. 1978. The evolution of the earliest cells. Sci. Am. 239:84102.CrossRefGoogle ScholarPubMed
Seilacher, A. 1970. Arbeitskonzept zur Konstruktionsmorphologie. Lethaia. 3:393396.CrossRefGoogle Scholar
Simon, H. A. 1962. The architecture of complexity. Proc. Am. Philos. Soc. 106:467482.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Simpson, G. G. 1961. Principles of Animal Taxonomy. 247 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Sober, E. 1981. Evolutionary theory and the ontological status of properties. Philos. Stud. 40:147176.CrossRefGoogle Scholar
Sober, E. and Lewontin, R. C. 1982. Artifact, cause and genic selection. Philos. Sci. 49:157180.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Nad. Acad. Sci. U.S.A. 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman; San Francisco.Google Scholar
Stebbins, G. L. and Ayala, F. J. 1981. Is a new evolutionary synthesis necessary? Science. 213:967971.CrossRefGoogle ScholarPubMed
Van Valen, L. 1976. Individualistic classes. Philos. Sci. 43:539541.CrossRefGoogle Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76:6184.Google Scholar
Vrba, E. S. 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science. 221:387389.CrossRefGoogle ScholarPubMed
Vrba, E. S. 1984. What is species selection? Syst. Zool. 33:318328.Google Scholar
Vrba, E. S.In press. Evolutionary pattern and process in the sister group Alcelaphini—Aepycerotini (Mammalia: Bovidae). In: Eldredge, N. and Stanley, S. M., eds. Living Fossils. Springer-Verlag; New York.Google Scholar
Waddington, C. H. 1942. Canalization of development and inheritance of acquired characters. Nature. 150:563564.CrossRefGoogle Scholar
Waddington, C. H. 1956. Genetic assimilation of the Bithorax phenotype. Evolution. 10:113.CrossRefGoogle Scholar
Williams, G. C. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 11:398411.CrossRefGoogle Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. 307 pp. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Wimsatt, W. C. 1974. Complexity and organization. Pp. 6786. In: Schaffner, K. F. and Cohen, R. S., eds. PSA 1972. Reidel; Dordrecht.CrossRefGoogle Scholar
Wimsatt, W. C. 1980. Reductionistic research strategies and biases in the units of selection controversy. Pp. 213259. In: Nickles, T., ed. Scientific Discovery, Vol. 2. Case Studies. Reidel; Dordrecht.CrossRefGoogle Scholar
Woese, C. R. 1983. The primary lines of descent and the universal ancestor. Pp. 209233. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics. 16:97159.CrossRefGoogle ScholarPubMed
Wright, S. 1945. Tempo and mode in evolution: a critical review. Ecology. 28:415419.CrossRefGoogle Scholar
Wright, S. 1967. Comments on the preliminary working papers of Eden and Waddington. Wistar Inst. Symp. 5:117120.Google ScholarPubMed
Wright, S. 1980. Genic and organismic selection. Evolution. 34:825843.CrossRefGoogle ScholarPubMed
Zuckerkandl, E. 1983. Molecular basis for directional evolution. P. 337. In: Chaline, J., ed. Modalités, Rythmes et Mécanismes de l'Evolution Biologique. Colloques Internationaux du Centre National de la Recherche Scientifique, no. 330; Dijon.Google Scholar