Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T20:45:10.407Z Has data issue: false hasContentIssue false

Identifying disruptions to the ecological balance of nature: a foraminiferal example across the initiation of the Paleocene–Eocene thermal maximum

Published online by Cambridge University Press:  07 February 2019

Lee-Ann C. Hayek
Affiliation:
Mathematics and Statistics, National Museum of Natural History, Smithsonian Institution, MRC-121, Washington, D.C. 20560, U.S.A. E-mail: [email protected]
Martin A. Buzas
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC-121 Washington, D.C. 20560, U.S.A.
Ellen Thomas
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109, U.S.A.; and Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459-1309, U.S.A.

Abstract

Deriving ecological and evolutionary descriptions of, and implications from, faunal assemblage patterns is commonly addressed by observation and a variety of exploratory techniques (scaling and clustering), along with qualitative evaluations of species occurrences and relative abundances. We argue that interpretations of faunal patterns, especially those documented by the fossil record, should be based upon the composition and structure of entire communities to provide strong conclusions and replicable results.

As an example, we use benthic foraminiferal data at high resolution (1–2 cm, corresponding to 300–1400 yr) over a section corresponding to about 20 kyr across the beginning of the Paleocene–Eocene thermal maximum (PETM). The PETM was an episode of rapid global warming about 55.5 Ma, associated with ocean acidification and lowered open oceanic productivity and deoxygenation and marked by severe turnover in benthic foraminiferal assemblages. Here we provide a stand-alone approach applicable to any dynamic faunal system, perturbation detection analysis (PDA), to recognize and identify community disruption evidenced as either positive growth or negative decline, and we use this methodical approach to obtain new information on foraminiferal communities before, during, and after the initiation of the PETM.

We conclude that the late Paleocene benthic foraminiferal community (FCOM1) was in a growth stage of positive increasing diversity, suggestive of favorable environmental conditions. This stage continued through the initial changes at the onset of the PETM, when disruption through environmental stress led to this community's termination. A second community (FCOM2) formed with declining diversity and high variability, showing a lack of adaptation to changing conditions. Knowledge of total assemblage status under both adverse and advantageous conditions is necessary, but not recognized by methods that rely upon analysis of single samples only: individual samples cannot be used to recognize disruptive changes in a community's structure, but these are easily identified using PDA.

Type
Articles
Copyright
Copyright © 2019 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alegret, L., Ortiz, S., Arenillas, I., and Molina, E.. 2010. What happens when the ocean is overheated? The foraminiferal response across the Paleocene–Eocene Thermal Maximum at the Alamedilla section (Spain). Geological Society of America Bulletin 122:16161624.Google Scholar
Alexander, K., Meissner, K. J., and Bralower, T. J.. 2015. Sudden spreading of corrosive bottom water during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience 8:458461.Google Scholar
Arreguín-Rodríguez, G. J., Alegret, L., and Thomas, E.. 2016. Late Paleocene–middle Eocene benthic foraminifera on a Pacific Seamount (Allison Guyot, ODP Site 865): greenhouse Climate and superimposed hyperthermal events. Paleoceanography 31:346364.Google Scholar
Arreguín-Rodriguez, G. J., Thomas, E., d'Haenens, S., Speijer, R. P., and Alegret, L.. 2018. Early Eocene deep-sea benthic foraminiferal faunas: recovery from the Paleocene–Eocene Thermal Maximum extinction in a greenhouse world. PLoS ONE 13:e0193167.Google Scholar
Aubry, M.-P., Ouda, K., Dupuis, C., Berggren, W. A., Van Couvering, J. A., and the Members of the Working Group on the Paleocene/Eocene Boundary. 2007. Global Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the Dababiya Section (Egypt). Episodes 30:271286.Google Scholar
Bains, S., Corfield, R. M., and Norris, R. D.. 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285:724727.Google Scholar
Barker, P. F., Kennett, J. P., O'Connell, S., Berkowitz, S., Bryant, W. R., Burckle, L. H., Egeberg, P. K., et al. 1988. Proceedings of the Ocean Drilling Program, Initial Reports 113. College Station, Tex.Google Scholar
Bennington, J. B., and Bambach, R. K.. 1996. Statistical testing for paleocommunity recurrence: are similar fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology 127:107133.Google Scholar
Bernhard, J. M. 1986. Characteristic assemblages and morphologies of benthic foraminnifera from organic-rich deposits: Jurassic through Holocene. Journal of Foraminiferal Research 16:207215.Google Scholar
Bernhard, J. M. 1992. Benthic foraminiferal distribution and biomass related to pore-water oxygen content: central California continental slope and rise. Deep-Sea Research, part A (Oceanographic Research Papers) 39:585605.Google Scholar
Buzas, M. A., and Culver, S. J.. 1998. Assembly, disassembly, and balance in marine paleocommunities. Palaios 13:263275.Google Scholar
Buzas, M. A., Hayek, L. C., Culver, S. J., Hayward, B. W., and Osterman, L. E.. 2014. Ecological and evolutionary consequences of benthic community stasis in the very deep sea (>1500 m). Paleobiology 40:102112.1500+m).+Paleobiology+40:102–112.>Google Scholar
Buzas, M. A., Hayek, L. C., Buzas-Stephens, P., and Simms, A. R.. 2017. The ecological balance of nature and the evolution of Baffin Bay, Texas. Journal of Foraminiferal Research 47:219227.Google Scholar
Chun, C. O. J., Delaney, M. L., and Zachos, J. C.. 2010. Paleoredox changes across the Paleocene–Eocene thermal maximum, Walvis Ridge (ODP Sites 1262, 1263, and 1266): evidence from Mn and U enrichment factors. Paleoceanography 25(4):PA4202Google Scholar
Corliss, B. H. and Emerson, S.. 1990. Distribution of rose Bengal-stained deep-sea benthic foraminifera from the Nova Scotia continental margin and Gulf of Maine. Deep-Sea Research, part A (Oceanographic Research Papers) 37:381400.Google Scholar
Dickens, G. R. 2011. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene–Eocene thermal maximum and other past hyperthermal events. Climate of the Past 7:831846.Google Scholar
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965971.Google Scholar
Dickson, A. J., Cohen, A. S., and Coe, A. L.. 2012. Seawater oxygenation during the Paleocene–Eocene Thermal Maximum. Geology 40:639642.Google Scholar
DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., and Bobe, R.. 2004. Long-term stasis in ecological assemblages: evidence from the fossil record. Annual Review of Ecology, Evolution, and Systematics 35:285322.Google Scholar
Dunkley-Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J., and Maslin, M.. 2013. Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews 125:123145.Google Scholar
Foster, G. L., Hull, P., Lunt, D. J., Zachos, J. C.. 2018. Placing our current “hyperthermal” in the context of rapid climate change in our geological past. Philosophical Transactions of the Royal Society of London A 376:20170086.Google Scholar
Foster, L. C., Schmidt, D. N., Thomas, E., Arndt, S., and Ridgwell, A., 2013. Surviving rapid climate change in the deep-sea during the Paleogene hyperthermals. Proceedings of the National Academy of Sciences USA 110:92739276.Google Scholar
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A.. 2006. Nannoplankton extinction and origination across the Paleocene–Eocene Thermal Maximum. Science 314:17701773.Google Scholar
Giusberti, L., Galazzo, F. Boscolo, and Thomas, E.. 2016. Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section). Climate of the Past 12:213240.Google Scholar
Gooday, A. J. 1988. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:7073.Google Scholar
Grimm, E. C. 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13:1335.Google Scholar
Gutjahr, M., Ridgwell, A., Sexton, P. F., Anagnostou, E., Pearson, P. N., Pälike, H., Norris, R. D., et al. 2017. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548:573577.Google Scholar
Hayek, L. C., and Adey, Walter H.. 2012. The thermogeographic model in paleogeography: application of an abiotic model to a plate tectonic world. Pp. 297–310 in Dar, I. A., ed. Earth Sciences. IntechOpen. https://doi.org/10.5772/26038.Google Scholar
Hayek, L. C., and Buzas, M. A.. 2010. Surveying natural populations: quantitative tools for assessing biodiversity, 2nd ed. Columbia University Press, New York.Google Scholar
Hayek, L. C., and Buzas, M. A.. 2013. On the proper and efficient use of diversity measures with individual samples. Journal of Foraminiferal Research 43:305313.Google Scholar
Hayek, L. C., and Wilson, B.. 2013. Quantifying assemblage turnover and species contributions at ecologic boundaries. PLoS ONE 8:e74999.Google Scholar
Hayward, B. W., Kawagata, S., Sabaa, A., Grenfell, H., van Kerckhoven, L., Johnson, K., and Thomas, E.. 2012. The last global extinction (Mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), their Late Cretaceous-Cenozoic history and taxonomy. Cushman Foundation for Foraminiferal Research Special Publication 43:1408.Google Scholar
Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., et al. 2012. The geological record of ocean acidification. Science 335:10581963.Google Scholar
Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, N. J.Google Scholar
John, C. M., Bohaty, S. M., Zachos, J. C., Sluijs, A., Gibbs, S., Brinkhuis, H., Bralower, T. J.. 2008. North American continental margin records of the Paleocene–Eocene Thermal Maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23:PA2217.Google Scholar
Jorissen, F. J., de Stigter, H. C., and Widmark, J. G.V.. 1995. A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology 22:315.Google Scholar
Jorissen, F. J., Fontanier, C., and Thomas, E.. 2007. Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics. Pp. 263326 in Hillaire-Marcel, C. and de Vernal, A., eds. Proxies in Late Cenozoic Paleoceanography, Part 2. Biological tracers and biomarkers. Elsevier, Amsterdam.Google Scholar
Kennett, J. P., and Stott, L. D.. 1991. Abrupt deep-sea warming, paleoceanogrpahic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225229.Google Scholar
Kirtland-Turner, S., Hull, P. M., and Ridgwell, A., 2017. A probabilistic assessment of the rapidity of PETM onset. Nature Communications 8:353.Google Scholar
Loubere, P. 1994. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera. Paleoceanography 9:723737.Google Scholar
Mackensen, A. H., Grobe, H., Kuhn, G., and Fütterer, D. K.. 1990. Benthic foraminiferal assemblages from the eastern Weddell Sea between 68 and 73°S: distribution, ecology and fossilization potential. Marine Micropaleontology 16:241283.Google Scholar
May, R. M. 1975. Patterns of species abundance and diversity. Pp. 81120 in Cody, M. L. and Diamond, J. M. eds. Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge.Google Scholar
McInerney, F. A. and Wing, S. L.. 2011. The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences 39:489516.Google Scholar
Murray, J. W. 2001. The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropaleontology 41:17.Google Scholar
Pälike, C., Delaney, M. L., and Zachos, J. C.. 2014. Deep-sea redox across the Paleocene–Eocene thermal maximum. Geochemistry, Geophysics, Geosystems 15:10381053.Google Scholar
Paytan, A., Averyt, K., Faul, K., Gray, E., and Thomas, E.. 2007. Barite accumulation, ocean productivity, and Sr/Ba in barite across the Paleocene–Eocene Thermal Maximum. Geology 35:11391142.Google Scholar
Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E., and Zachos, J. C.. 2014. Rapid and sustained surface ocean acidification during the Paleocene–Eocene Thermal maximum. Paleoceanography 29:357369.Google Scholar
Röhl, U., Westerhold, T., Bralower, T. J., and Zachos, J. C., 2007. On the duration 5 of the Paleocene–Eocene thermal maximum (PETM). Geochemistry, Geophysics, Geosystems 8(12):Q12002.Google Scholar
Schmidt, D. N., Thomas, E., Authier, E., Saunders, D., and Ridgwell, A., 2018, Strategies in times of crisis—insights into the benthic foraminiferal record of the PETM. Philosophical Transactions of the Royal Society of London A 376:20170328.Google Scholar
Schmiedl, G. 1995. Late Quaternary benthic foraminiferal assemblages from the eastern South Atlantic Ocean: reconstruction of deep-water circulation and productivity changes. Berichte zur Polarforschung 160:1207.Google Scholar
Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J., and Thomas, E.. 2007. The Palaeocene–Eocene Thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of climate change. Pp. 323–349 in Williams, M., Haywood, A. M., Gregory, F. J., and Schmid, D. N., eds. Deep time perspectives on climate change: marrying the signal from computer models and biological proxies. Geological Society of London Special Publication. doi: 10.1144/TMS002.15.Google Scholar
Speijer, R. P., Scheibner, C., Stassen, P., and Morsi, A.-M. M.. 2012. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene–Eocene thermal maximum (PETM). Austrian Journal of Earth Sciences 105:616.Google Scholar
Stassen, P., Thomas, E., and Speijer, R. P.. 2012. Restructuring outer neritic foraminiferal assemblages in the aftermath of the Paleocene–Eocene thermal maximum. Journal of Micropalaeontology 31:8993.Google Scholar
Stassen, P., Thomas, E., and Speijer, R. P.. 2015. Paleocene–Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: benthic foraminiferal biotic events. Marine Micropaleontology 115:123.Google Scholar
Steineck, P. L., and Thomas, E.. 1996. The latest Paleocene crisis in the deep sea: ostracode succession at Maud Rise, Southern Ocean. Geology 24:583586.Google Scholar
Takeda, K., and Kaiho, K.. 2007. Faunal turnovers in central Pacific benthic foraminifera during the Paleocene–Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 251:175197.Google Scholar
Thomas, D. J., Zachos, J. C., Bralower, T. J., Thomas, E., and Bohaty, S.. 2002. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene–Eocene thermal maximum. Geology 30:10671070.Google Scholar
Thomas, E. 1989. Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. Geological Society of London Special Publication 47:283296.Google Scholar
Thomas, E. 1990a. Late Cretaceous–early Eocene mass extinctions in the deep sea. In V. L. Sharpton and P. D. Ward, eds. Global catastrophes in earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247:481–495.Google Scholar
Thomas, E. 1990b. Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica). Proceedings of the Ocean Drilling Program, Scientific Results 113:571–594. College Station, Tex.Google Scholar
Thomas, E. 1998. The biogeography of the late Paleocene benthic foraminiferal extinction. Pp. 214243 in Aubry, M.-P., Lucas, S. G., and Berggren, W. A., eds. Late Paleocene–Early Eocene biotic and climatic events in the marine and terrestrial records. Columbia University Press, New York.Google Scholar
Thomas, E. 2003. Extinction and food at the sea floor: a high resolution benthic foraminiferal record across the Initial Eocene Thermal Maximum, Southern Ocean Site 690. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper 369:319–332.Google Scholar
Thomas, E. 2007. Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on Earth? In S. Monechi, R. Coccioni, and M. Rampino, eds. Large ecosystem perturbations: causes and consequences. Geological Society of America Special Paper 424:1–23.Google Scholar
Thomas, E., and Shackleton, N. J.. 1996. The Paleocene–Eocene benthic foraminiferal extinction and stable isotope anomalies. In R. W. O. B. Knox, R. M. Corfield, and R. E. Dunay, eds. Correlation of the early Paleogene in northwest Europe. Geological Society of London Special Publication 101:401–441.Google Scholar
Webb, A. E., Leighton, L. R., Schellenberg, S. A., Landau, E. A., and Thomas, E.. 2009. Impact of Paleocene–Eocene global warming on microbenthic community structure: using rank-abundance curves to quantify ecological response. Geology 37:783786.Google Scholar
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F.. 2008. Astronomical calibration of the Paleocene time. Palaeogeography, Paleoclimatology, Palaeoecology 257:377403.Google Scholar
Westerhold, T., Röhl, U., and Laskar, J.. 2012. Time scale controversy: accurate orbital calibration of early Paleogene. Geochemistry, Geophysics, Geosystems 3:Q06015.Google Scholar
Westerhold, T., Röhl, U., Frederichs, T., Agnini, C., Raffi, I., Zachos, J. C., and Wilkens, R. H.. 2017. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? Climate of the Past 13:11291152.Google Scholar
Westerhold, T., Röhl, U., Donner, B., and Zachos, J. C.. 2018. Global extent of early Eocene hyperthermal events—a new Pacific Benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology 33:626642.Google Scholar
Wilson, B., and Hayek, L. C.. 2015. Late Quaternary benthic foraminifera and the Orinoco Plume. Marine Micropaleontology 121:8596.Google Scholar
Winguth, A. M. E., Thomas, E., and Winguth, C.. 2012. Global decline in ocean ventilation, oxygenation, and productivity during the Paleocene–Eocene Thermal Maximum: implications for the benthic extinction. Geology 40:263266.Google Scholar
Yamaguchi, T., and Norris, R. D.. 2015. No place to retreat: heavy extinction and delayed recovery on a Pacific guyot during the Paleocene–Eocene Thermal Maximum. Geology 43:443446.Google Scholar
Yamaguchi, T., Norris, R. D., and Bornemann, A.. 2012. Dwarfing of ostracodes during the Paleocene–Eocene Thermal Maximum at DSDP Site 401 (Bay of Biscay, North Atlantic) and its implication for changes in organic carbon cycle in deep-sea benthic ecosystem. Palaeogeography, Paleoclimatology, Palaeoecology 346–347:130144.Google Scholar
Yao, W., Paytan, A., and Wortmann, U. G.. 2018. Large-scale ocean deoxygenation during the Paleocene–Eocene Thermal Maximum. Science 361:804806.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., et al. 2005. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308:16111615.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.Google Scholar
Zeebe, R. E., and Zachos, J. C.. 2013. Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene. Philosophical Transactions of the Royal Society of London A 371. doi:10.1098/rsta.2012.0006.Google Scholar
Zeebe, R., Dickens, G. R., Ridgwell, A., Sluijs, A., and Thomas, E.. 2014. Onset of carbon isotope excursion at the Paleocene–Eocene Thermal Maximum took millennia, not 13 years. Proceedings of the National Academy of Sciences USA 111:E1062E1063.Google Scholar
Zhou, X., Thomas, E., Rickaby, R. E. M., Winguth, A. M. E., and Lu, Z.. 2014. I/Ca evidence for global upper ocean deoxygenation during the Paleocene–Eocene Thermal Maximum (PETM). Paleoceanography 29:964975.Google Scholar
Zhou, X., Thomas, E., Winguth, A. M. E., Ridgwell, A., Scher, H. D., Hoogakker, B. A. A., Rickaby, R. E. M., and Lu, Z.. 2016. Expanded oxygen minimum zones during the late Paleocene–early Eocene: hints from multi-proxy comparison and ocean modeling. Paleoceanography 31:15321546.Google Scholar