Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T10:14:28.259Z Has data issue: false hasContentIssue false

Homoplasy and the evolution of dinosaur locomotion

Published online by Cambridge University Press:  08 February 2016

Matthew T. Carrano*
Affiliation:
Department of Anatomical Sciences, Health Sciences Center T-8, State University of New York at Stony Brook, Stony Brook, New York 11794-8081. E-mail: [email protected]

Abstract

In this paper, I survey hindlimb and pelvic anatomy across non-avian dinosaurs and analyze these within a cladistic framework to quantify patterns of change within the locomotor apparatus. Specifically, I attempt to identify where homoplasy constitutes parallelism and may thereby be used to infer similar selective pressures on hindlimb function. Traditional methods of discrete character optimization are used along with two methods for evaluating changes in continuous characters in a phylogenetic context (squared-change parsimony and clade rank correlation). Resultant patterns are evaluated in light of the biomechanics of locomotion and the relationship between form and function in extant terrestrial vertebrates.

Although non-avian dinosaurian locomotor morphology is strikingly uniform, these analyses reveal the repeated derivations of several morphological features that have potential relevance for hindlimb locomotor function. Anterior and posterior iliac expansion, a medially oriented femoral head, and an elevated femoral lesser trochanter each evolved independently multiple times within Dinosauria. These changes probably reflect enlargement of several hindlimb muscles as well as a general switch in their predominant function from abduction-adduction (characteristic of “sprawling” limb postures) to protraction-retraction (characteristic of parasagittal, or “erect,” limb postures). Several “avian” characteristics are shared with more basal theropods, and many were acquired convergently in other dinosaurian lineages. The evolution of the avian hindlimb therefore represents a cumulative acquisition of characters, many of which were quite far removed in time and function from the origin of flight.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. M., and Dimery, N. J. 1985. The significance of sesamoids and retro-articular processes for the mechanics of joints. Journal of Zoology 205:357371.CrossRefGoogle Scholar
Bennett, S. C. 1997. Terrestrial locomotion in pterosaurs: a reconstruction based on Pteraichnus trackways. Journal of Vertebrate Paleontology 17:104113.CrossRefGoogle Scholar
Benton, M. J. 1999. Scleromochlus taylori and the origin of dinosaurs and pterosaurs. Philosophical Transactions of the Royal Society of London B 354:14231446.CrossRefGoogle Scholar
Bertram, J. E. A., and Biewener, A. A. 1990. Differential scaling of the long bones in the terrestrial Carnivora and other mammals. Journal of Morphology 204:157169.CrossRefGoogle Scholar
Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245:4548.CrossRefGoogle ScholarPubMed
Bonaparte, J. F. 1976. Pisanosaurus mertii Casamiquela and the origin of the Ornithischia. Journal of Paleontology 50:808820.Google Scholar
Bonaparte, J. F. 1984. Locomotion in rauisuchid thecodonts. Journal of Vertebrate Paleontology 3:210218.CrossRefGoogle Scholar
Brooks, D. R. 1996. Explanations of homoplasy at different levels of biological organization. Pp. 336in Sanderson, M. J. and Hufford, L., eds. Homoplasy: the recurrence of similarity in evolution. Academic Press, San Diego.CrossRefGoogle Scholar
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, ecology and behavior: a research program in evolutionary biology. University of Chicago Press, Chicago.Google Scholar
Carrano, M. T. 1998a. Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology. Paleobiology 24:450469.CrossRefGoogle Scholar
Carrano, M. T. 1998b. The evolution of dinosaur locomotion: functional morphology, biomechanics, and modern analogs. Ph.D. dissertation. University of Chicago, Chicago.Google Scholar
Carrano, M. T. 1999. What, if anything, is a cursor? Categories versus continua in determining locomotor ability in mammals and dinosaurs. Journal of Zoology 247:2942.CrossRefGoogle Scholar
Carrano, M. T., and Sampson, S. D. 1999. Evidence for a paraphyletic Ceratosauria and its implications for theropod dinosaur evolution. Journal of Vertebrate Paleontology 19(Suppl.):36A.Google Scholar
Carter, D. R. 1987. Mechanical loading history and skeletal biology. Journal of Biomechanics 20:10951109.CrossRefGoogle ScholarPubMed
Charig, A. J. 1972. The evolution of the archosaur pelvis and hindlimb: an explanation in functional terms. Pp. 121155in Joysey, K. A. and Kemp, T. S., eds. Studies in vertebrate evolution. Oliver and Boyd, Edinburgh.Google Scholar
Clark, J. M., Hopson, J. A., Hernández, R. R., Fastovsky, D. E., and Montellano, M. 1998. Foot posture in a primitive pterosaur. Nature 391:886888.CrossRefGoogle Scholar
Coombs, W. P. Jr. 1979. Osteology and myology of the hindlimb in Ankylosauria (Reptilia, Ornithischia). Journal of Paleontology 53:666684.Google Scholar
Cooper, M. R. 1984. A reassessment of Vulcanodon karibaensis Raath (Dinosauria: Saurischia) and the origin of the Sauropoda. Palaeontologia Africana 25:203231.Google Scholar
Currey, J. D. 1987. The evolution of the mechanical properties of amniote bone. Journal of Biomechanics 20:10351044.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.CrossRefGoogle Scholar
Forster, C. A. 1999. Gondwanan dinosaur evolution and biogeographic analysis. Journal of African Earth Sciences 28:169185.CrossRefGoogle Scholar
Forster, C. A., Sampson, S. D., Chiappe, L. M., and Krause, D. W. 1998. The theropod ancestry of birds: new evidence from the Late Cretaceous of Madagascar. Science 279:19151919.CrossRefGoogle ScholarPubMed
Galton, P. M. 1969. The pelvic musculature of the dinosaur Hypsilophodon (Reptilia: Ornithischia). Postilla 131:164.Google Scholar
Galton, P. M. 1990. Basal Sauropodomorpha-Prosauropoda. Pp. 320344in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Garland, T. Jr., Midford, P. E., and Ives, A. R. 1999. An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. American Zoologist 39:374388.CrossRefGoogle Scholar
Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16:170186.CrossRefGoogle Scholar
Gatesy, S. M. 1994. Neuromuscular diversity in archosaur deep dorsal thigh muscles. Brain, Behavior and Evolution 43:114.CrossRefGoogle ScholarPubMed
Gatesy, S. M. 1995. Functional evolution of the hindlimb and tail from basal theropods to birds. Pp. 219234in Thomason, J. J. and Weishampel, D. B., eds. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Gatesy, S. M. 1997. An electromyographic analysis of hindlimb function in Alligator during terrestrial locomotion. Journal of Morphology 234:197212.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Gatesy, S. M. 1999a. Guineafowl hind limb function. I. Cineradiography analysis and speed effects. Journal of Morphology 240:115125.3.0.CO;2-Y>CrossRefGoogle Scholar
Gatesy, S. M. 1999b. Guineafowl hind limb function. II. Electromyographic analysis and motor pattern evolution. Journal of Morphology 240:127142.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Gatesy, S. M., and Biewener, A. A. 1991. Bipedal locomotion: effects of speed, size and limb posture in birds and humans. Journal of Zoology 224:127147.CrossRefGoogle Scholar
Gauthier, J. 1986. Saurischian monophyly and the origin of birds. In Padian, K., ed. The origin of birds and the evolution of flight. Memoirs of the California Academy of Sciences 8:155Google Scholar
Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Annals of the New York Academy of Sciences 22:287294.CrossRefGoogle Scholar
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.CrossRefGoogle Scholar
Holtz, T. R. Jr. 1994. The phylogenetic position of the Tyrannosauridae: implications for theropod systematics. Journal of Paleontology 68:11001117.CrossRefGoogle Scholar
Holtz, T. R. Jr.In press. A new phylogeny of the carnivorous dinosaurs. GAIA.Google Scholar
Huey, R. B., and Bennett, A. F. 1987. Phylogenetic studies of coadaptation: preferred temperature versus optimal performance temperatures of lizards. Evolution 41:10981115.CrossRefGoogle ScholarPubMed
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.CrossRefGoogle Scholar
Maddison, W. P., and Maddison, D. R. 1992. MacClade: analysis of phylogeny and character evolution, Version 3.01. Sinauer, Sunderland, Mass.Google Scholar
Martins, E. P. 1999. Estimation of ancestral states of continuous characters: a computer simulation study. Systematic Biology 48:642650.CrossRefGoogle Scholar
Maryanska, T. 1990. Pachycephalosauria. Pp. 564577in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Norrell, M. A., and Makovicky, P. J. 1997. Important features of the dromaeosaur skeleton: information from a new specimen. American Museum Novitates 3215:128.Google Scholar
Norrell, M. A., and Novacek, M. J. 1992. Congruence between superpositional and phylogenetic patterns: comparing cladistic patters with fossil records. Cladistics 8:319337.CrossRefGoogle Scholar
Novas, F. E. 1996. Dinosaur monophyly. Journal of Vertebrate Paleontology 16:723741.CrossRefGoogle Scholar
Padian, K. 1983. A functional analysis of flying and walking in pterosaurs. Paleobiology 9:218239.CrossRefGoogle Scholar
Padian, K., and Olsen, P. E. 1989. Ratite footprints and the stance and gait of Mesozoic theropods. Pp. 231241in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Parrish, J. M. 1986. Locomotor adaptations in the hindlimb and pelvis of the Thecodontia. Hunteria 1:135.Google Scholar
Patak, A. E., and Baldwin, J. 1998. Pelvic limb musculature in the emu Dromaius novaehollandiae (Aves: Dromaiidae): adaptations to high-speed running. Journal of Morphology 238:2337.3.0.CO;2-O>CrossRefGoogle Scholar
Peczis, J. 1994. Implications of body-mass estimates for dinosaurs. Journal of Vertebrate Paleontology 14:520533.CrossRefGoogle Scholar
Perle, A. 1985. Comparative myology of the pelvic-femoral region in the bipedal dinosaurs. Paleontological Journal 1985:105109.Google Scholar
Polly, P. D. 1999. Testing macroevolutionary patterns using squared-change parsimony. Journal of Vertebrate Paleontology 19(Suppl.):69A.Google Scholar
Raikow, R. J. 1985. Systematic and functional aspects of the locomotor system of the scrub-birds: Atrichornis, and lyrebirds, Menura (Passeriformes: Atrichornithidae and Menuridae). Records of the Australian Museum 37:211228.CrossRefGoogle Scholar
Remedios, A. M., Clayton, H. M. and Skuba, E. 1994. Femoral head excision arthroplasty using the vascularized rectus femoris muscle sling. Veterinary and Comparative Orthopaedics and Traumatology 7:8287.Google Scholar
Romer, A. S. 1923a. The ilium in dinosaurs and birds. Bulletin of the American Museum of Natural History 48:141145.Google Scholar
Romer, A. S. 1923b. The pelvic musculature of saurischian dinosaurs. Bulletin of the American Museum of Natural History 48:605617.Google Scholar
Romer, A. S. 1927a. The pelvic musculature of ornithischian dinosaurs. Acta Zoologica 8:225275.CrossRefGoogle Scholar
Romer, A. S. 1927b. The development of the thigh musculature of the chick. Journal of Morphology and Physiology 43:347385.CrossRefGoogle Scholar
Romer, A. S. 1942. The development of tetrapod limb musculature—the thigh of Lacerta. Journal of Morphology 71:251298.CrossRefGoogle Scholar
Rowe, T. 1986. Homology and evolution of the deep dorsal thigh musculature in birds and other Reptilia. Journal of Morphology 189:327346.CrossRefGoogle ScholarPubMed
Russell, D. A. 1972. Ostrich dinosaurs from the late Cretaceous of western Canada. Canadian Journal of Earth Sciences 9:375402.CrossRefGoogle Scholar
Luca, A. P. Santa 1984. Postcranial remains of Fabrosauridae (Reptilia: Ornithischia) from the Stormberg of southern Africa. Palaeontographica Africana 25:151180.Google Scholar
Schultz, T. R., Cocroft, R. B., and Churchill, G. A. 1996. The reconstruction of ancestral character states. Evolution 50:504511.CrossRefGoogle ScholarPubMed
Sereno, P. C. 1986. Phylogeny of the bird-hipped dinosaurs. National Geographic Research 2:234256.Google Scholar
Sereno, P. C. 1991a. Basal archosaurs: phylogenetic relationships and functional implications. Journal of Vertebrate Paleontology 11 (Memoir 2).CrossRefGoogle Scholar
Sereno, P. C. 1991b. Lesothosaurus, “fabrosaurids,” and the early evolution of Ornithischia. Journal of Paleontology 11:168197.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.CrossRefGoogle ScholarPubMed
Sereno, P. C., and Arcucci, A. B. 1990. The monophyly of crurotarsal archosaurs and the origin of bird and crocodile ankle joints. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 180:2152.CrossRefGoogle Scholar
Sereno, P. C., and Arcucci, A. B. 1993. Dinosaurian precursors from the Middle Triassic of Argentina: Lagerpeton chanarensis. Journal of Vertebrate Paleontology 13:385399.CrossRefGoogle Scholar
Sereno, P. C., and Arcucci, A. B. 1994. Dinosaurian precursors from the Middle Triassic of Argentina: Marasuchus lilloensis, gen. nov. Journal of Vertebrate Paleontology 14:5373.CrossRefGoogle Scholar
Sereno, P. C., and Arcucci, A. B. 1999. The evolution of dinosaurs. Science 284:21372147.CrossRefGoogle ScholarPubMed
Sereno, P. C., Wilson, J. A., Larsson, H. C. E., Dutheil, D. B., and Sues, H.-D. 1994. Early Cretaceous dinosaurs from the Sahara. Science 266:267271.CrossRefGoogle ScholarPubMed
Shufeldt, R. W. 1909. Osteology of birds. New York State Museum Bulletin 130:1381.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed.W. H. Freeman, New York.Google Scholar
Squire, K. R. E., Fessler, J. F., Toombs, J. P., Vansickle, D. C., and Blevins, W. E. 1991. Femoral head osteoectomy in horses and cattle. Veterinary Surgery 20:453458.CrossRefGoogle Scholar
Sues, H.-D. 1997. On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria: Theropoda) from western North America. Journal of Vertebrate Paleontology 17:698716.CrossRefGoogle Scholar
Sumida, S. S., and Berman, D. S. 1997. An early reptile with asymmetrical limbs: possible evidence for the earliest facultative biped or vertical climber from the Early Permian of Germany. Journal of Vertebrate Paleontology 17(Suppl.):79AGoogle Scholar
Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony. Laboratory for Systematics, Smithsonian Institution, Washington, D.C.Google Scholar
Wake, D. B. 1991. Homoplasy: the result of natural selection, or evidence of design limitations? American Naturalist 138:543567.CrossRefGoogle Scholar
Walker, A. D. 1977. Evolution of the pelvis in birds and dinosaurs. Pp. 319358in Andrews, S. M., Miles, R. S., and Walker, A. D., eds. Problems in vertebrate evolution. Linnean Society Symposium Series, London.Google Scholar
Wilson, J. A., and Sereno, P. C. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Journal of Vertebrate Paleontology 18 (Memoir 5):168.CrossRefGoogle Scholar
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Pp. 1933in Thomason, J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar