Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T11:10:15.798Z Has data issue: false hasContentIssue false

The hierarchical expansion of sorting and selection: sorting and selection cannot be equated

Published online by Cambridge University Press:  08 April 2016

Elisabeth S. Vrba
Affiliation:
Transvaal Museum, P.O. Box 413, Pretoria 0001, South Africa
Stephen Jay Gould
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

Abstract

In a nonhierarchical world, where selection on organisms regulated all nonrandom evolutionary change, the traditional equation of selection (a cause of sorting) with sorting itself (differential birth and death among varying organisms within a population) would rarely lead to error, even though the phenomena are logically distinct (for sorting is a simple description of differential “success,” and selection a causal process). But in a hierarchical world, with entities acting as evolutionary individuals (genes, organisms, and species among them) at several levels of ascending inclusion, sorting among entities at one level has a great range of potential causes. Direct selection upon entities themselves is but one possibility among many. This paper discusses why hierarchy demands that sorting and selection be disentangled. It then presents and illustrates an expanded taxonomy of sorting for a hierarchical world. For each of three levels (genes, organisms, and species), we show how sorting can arise from selection at the focal level itself, and as a consequence either of downward causation from processes acting on individuals at higher levels or upward causation from lower levels. We then discuss how hierarchy might illuminate a range of evolutionary questions based on both the logical structure of hierarchy and the historical pathways of its construction—for hierarchy is a property of nature, not only a conceptual scheme for organization.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. and Fristrup, K. 1982. The theory of evolution by natural selection: a hierarchical expansion. Paleobiology. 8:113129.Google Scholar
Campbell, T. 1974. “Downward causation” in hierarchically organized biological systems. Pp. 179186. In: Ayala, F. J. and Dobzhansky, T., eds. Studies in the Philosophy of Biology. Univ. California Press; San Francisco.Google Scholar
Cracraft, J. 1982. A non-equilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Syst. Zool. 31:348365.CrossRefGoogle Scholar
Dawkins, R. 1978. Replicator selection and the extended phenotype. Z. Tierpsychol. 47:6176.CrossRefGoogle ScholarPubMed
Doolittle, W. F. 1982. Selfish DNA after fourteen months. Pp. 328. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Doolittle, W. F. and Sapienza, C. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature. 284:601603.Google Scholar
Dover, G. A. 1980. Ignorant DNA? Nature. 285:618620.Google Scholar
Dover, G. A., Brown, S., Coen, E. E., Dallas, J., Strachan, T., and Trick, M. 1982. The dynamics of genome evolution and species differentiation. Pp. 343372. In: Dover, G. A. and Flavell, R. B., eds. Genome Evolution. Academic Press; London.Google Scholar
Elder, J. T., Pan, J., Duncan, C. H., and Weissman, S. M. 1981. Transcriptional analysis of interspersed repetitive polymerase III transcription units in human DNA. Nucl. Acids Res. 9:11711189.CrossRefGoogle ScholarPubMed
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and Evolutionary Process. 349 pp. Columbia Univ. Press; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. W. H. Freeman; San Francisco.Google Scholar
Filippi, G. A., Rinaldi, R., Palmarioni, R., Seravalli, E., and Siniscalco, M. 1977. Linkage disequilibrium for two x-linked genes in Sardinia and its bearing on the statistical mapping of the human x chromosome. Genetics 86:119212.Google Scholar
Fisher, R. A. 1958. The Genetical Theory of Natural Selection. 291 pp. Dover; New York. 2d ed of 1930 book.Google Scholar
Ford, E. B. 1971. Ecological Genetics. 410 pp. Chapman & Hall; London. 3d ed. of 1964 book.Google Scholar
Futuyma, D. J. 1979. Evolutionary Biology. 565 pp. Sinauer Associates; Sunderland, Mass.Google Scholar
Ghiselin, M. T. 1974. A radical solution to the species problem. Syst. Zool. 25:536544.CrossRefGoogle Scholar
Gilinsky, N. L. 1987. Speciation, trends, and macroevolution. Evol. Biol. in press.Google Scholar
Golubovsky, M. D. 1978. Two types of instability of singed alleles isolated from populations of Dmelanogaster during mutation outburst in 1973. Drosophila Inf. Serv. 53:171.Google Scholar
Gould, S. J. 1982a. Darwinism and the expansion of evolutionary theory. Science. 216:380387.Google Scholar
Gould, S. J. 1982b. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to macroevolution. Pp. 83104. In: Milkman, R., ed. Perspectives on Evolution. Sinauer: Sunderland, Mass.Google Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology. 11:212.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Gould, S. J. and Vrba, E. S. 1982. Exaptation—a missing term in the science of form. Paleobiology. 8:415.CrossRefGoogle Scholar
Greenacre, M. J. and Vrba, E. S. 1984. A correspondence analysis of biological census data. Ecology. 65:984997.Google Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science. 199:885887.CrossRefGoogle ScholarPubMed
Hull, D. L. 1974. Philosophy of Biological Science. 148 pp. Prentice-Hall; Englewood Cliffs, N.J.Google Scholar
Hull, D. L. 1980. Individuality and selection. Ann. Rev. Ecol. Syst. 11:311332.CrossRefGoogle Scholar
Kettlewell, H. B. D. 1958. Industrial melanism in the Lepidoptera and its contribution to our knowledge of evolution. Proc. 10th Int. Congr. Entomol. 2:831841.Google Scholar
Lande, R. 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution. 33:234251.CrossRefGoogle ScholarPubMed
Lewis, H. 1961. Experimental sympatric populations of Clarkia. Am. Nat. 95:155168.CrossRefGoogle Scholar
Lewontin, R. C. 1970. The units of selection. Ann. Rev. Ecol. Syst. 1:116.Google Scholar
Lindsley, D. L. and Grell, E. H. 1944. Genetic variations of Drosophila melanogaster. Carn. Inst. Wash. Publ. 627:1471.Google Scholar
Maynard Smith, J. 1978. The Evolution of Sex. Cambridge Univ. Press; Cambridge.Google Scholar
Orgel, L. E. and Crick, F. H. C. 1980. Selfish DNA: the ultimate parasite. Nature. 284:604607.Google Scholar
Paterson, H. E. H. 1982. Perspective on speciation by reinforcement. S. Afr. J. Sci. 78:5357.Google Scholar
Pattee, H. H. 1970. The problem of biological hierarchy. Pp. 117136. In: Waddington, C. H., ed. Towards a Theoretical Biology. Edinburgh Univ. Press; Edinburgh.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.Google Scholar
Shapiro, J. A. 1983. Variation as a genetic engineering process. Pp. 253272. In: Bendall, D. S., ed. Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge.Google Scholar
Sober, E. and Lewontin, R. C. 1982. Artifact, cause and genic selection. Phil. Sci. 49:157180.CrossRefGoogle Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Natl. Acad. Sci. USA 72:646650.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 322 pp. W. H. Freeman; San Francisco.Google Scholar
Stearns, S. C. 1982. The role of development in the evolution of life histories. Pp. 237256. In: Bonner, J. T., ed. Evolution and Development. Springer-Verlag; Berlin.Google Scholar
Templeton, A. R. 1982. Adaptation and the integration of evolutionary forces. Pp. 1531. In: Milkman, R., ed. Perspectives in Evolution. Sinauer Associates; Sunderland, Mass.Google Scholar
Vrba, E. S. 1980a. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76:6184.Google Scholar
Vrba, E. S. 1980b. The significance of bovid remains as indicators of environment and predation patterns. Pp. 247271. In: Behrensmeyer, A. K. and Hill, A. P., eds. Fossils in the Making. Univ. Chicago Press; Chicago.Google Scholar
Vrba, E. S. 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science. 22:387389.Google Scholar
Vrba, E. S. 1984a. Evolutionary pattern and process in the sister-group Alcelaphini-Aepycerotini (Mammalia: Bovidae). Pp. 6279. In: Eldredge, N. and Stanley, S. M., eds. Living Fossils. Springer-Verlag; New York.Google Scholar
Vrba, E. S. 1984b. What is species selection? Syst. Zool. 33:318328.Google Scholar
Vrba, E. S. and Eldredge, N. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology. 10:146171.Google Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. 307 pp. Princeton Univ. Press; Princeton, N.J.Google Scholar
Wilson, A. C., Bush, G. L., Case, S. M., and King, M. C. 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Natl. Acad. Sci. U.S.A. 72:50615065.Google Scholar
Wright, S. 1941. On the probability of fixation of reciprocal translocations. Am. Nat. 75:513522.Google Scholar
Wright, S. 1956. Modes of selection. Am. Nat. 90:524.Google Scholar