Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T23:45:20.979Z Has data issue: false hasContentIssue false

Hadrosaurid migration: inferences based on stable isotope comparisons among Late Cretaceous dinosaur localities

Published online by Cambridge University Press:  08 April 2016

Henry C. Fricke
Affiliation:
Department of Geology, Colorado College, Colorado Springs, Colorado 80903. E-mail: [email protected]
Raymond R. Rogers
Affiliation:
Geology Department, Macalester College, Saint Paul, Minnesota 55105
Terry A. Gates
Affiliation:
Department of Biology, Lake Forest College, Lake Forest, Illinois 60045

Abstract

Stable carbon and oxygen isotope ratios were measured for carbonate in samples of hadrosaurid tooth enamel and dentine, and gar scale ganoine and dentine from five geologically “contemporaneous“ (two-million-year resolution) and geographically distant late Campanian formations (Two Medicine, Dinosaur Park, Judith River, Kaiparowits, and Fruitland) in the Western Interior Basin. In all cases, isotopic offsets were observed between enamel and dentine from the same teeth, with dentine being characterized by higher and more variable carbon and oxygen isotope ratios. Isotopic offsets were also observed between gar ganoine and hadrosaur enamel in all sites analyzed. Both of these observations indicate that diagenetic overprinting of enamel isotope ratios did not entirely obfuscate primary signals. Decreases in carbon and oxygen isotope ratios were observed in hadrosaur enamel from east to west, and overlap in isotope ratios occurred only between two of the sampled sites (Dinosaur Park and Judith River Formations).

The lack of isotopic overlap for enamel among localities could be due to diagenetic resetting of isotope ratios such that they reflect local groundwater effects rather than primary biogenic inputs. However, the large range in carbon isotope ratios, the consistent taxonomic offsets for enamel/ganoine data, and comparisons of enamel-dentine data from the same teeth all suggest that diagenesis is not the lone driver of the signal. In the absence of major alteration, the mostly likely explanation for the isotopic patterns observed is that hadrosaurids from the targeted formations were eating plants and drinking waters with distinct isotopic ratios. One implication of this reconstruction is that hadrosaurids in the Late Cretaceous of the Western Interior did not migrate to an extent that would obscure local isotopic signatures.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Badgley, C. 1986. Taphonomy of mammalian fossil remains from Siwalik rocks of Pakistan. Paleobiology 12:119142.CrossRefGoogle Scholar
Barrera, E., and Savin, S. M. 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. Pp. 245282 in Barrera, E. and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332: 242–282.Google Scholar
Bell, P. R., and Snively, E. 2008. Polar dinosaurs on parade: a review of dinosaur migration. Alcheringa 32:271284.CrossRefGoogle Scholar
Bocherens, H. 2003. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. Deinsea 9:5776.Google Scholar
Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.CrossRefGoogle Scholar
Brouwers, E. M., Clemens, W. A., Spicer, R. A., Ager, T. A., Carter, D. L., and Sliter, W. V. 1987. Dinosaurs on the North Slope of Alaska: high latitude, latest Cretaceous environments. Science 237:16081610.Google Scholar
Carpenter, K. 1982. Baby dinosaurs from the Late Cretaceous Lance and Hell Creek Formations and a description of a new species of theropod. University of Wyoming Contributions to Geology 20(2):23134.Google Scholar
Case, J. A., Martin, J. E., Chaney, D. S., Reguero, M., Marennsi, S. A., Santillana, S. M., and Woodburne, M. O. 2000. The first duck-billed dinosaur (family Hadrosauridae) from Antarctica. Journal of Vertebrate Palaeontology 20:612614.CrossRefGoogle Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.Google Scholar
Cerling, T. E., Hart, J. A., and Hart, T. B. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:512.Google Scholar
Clemens, W. A., and Allison, C. W. 1985. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska. Geological Society of America Abstracts with Programs 17(7):548.Google Scholar
Clemens, W. A., and Nelms, L. G. 1993. Paleoecological implications of Alaskan terrestrial vertebrate fauna in latest Cretaceous time at high latitudes. Geology 21:503506.Google Scholar
Clementz, M. T., and Koch, P. L. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461472.Google Scholar
Clouse, V., and Horner, J. R. 1993. Eggs and embryos from the Judith River Formation of Montana. Journal of Vertebrate Paleontology 13(Suppl. 3):31A.Google Scholar
Crane, P. R., and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675678.CrossRefGoogle ScholarPubMed
Currie, P. J. 1989. Dinosaur footprints of western Canada. Pp. 293307 in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.CrossRefGoogle Scholar
Davies, K. L. 1987. Duck-bill dinosaurs (Hadrosauridae, Ornithischia) from the North Slope of Alaska. Journal of Paleonaology 61:198200.Google Scholar
DeNiro, M. J., and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495506.Google Scholar
Dettman, D. L., and Lohmann, K. 2000. Oxygen isotope evidence for high-altitude snow in the laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene. Geology 28:243246.Google Scholar
Eberth, D. A. 2005. The geology. Pp. 5482 in Currie, P. J. and Koppelhus, E. B., eds. Dinosaur Provincial Park. Indiana University Press, Bloomington.Google Scholar
Eberth, D. A., and Deino, A. L. 1992. A geochronology of the non-marine Judith River Formation of southern Alberta. SEPM 1992 theme meeting, Mesozoic of the Western Interior, Fort Collins, Abstracts with Programs, pp. 2425.Google Scholar
Eberth, D. A., and Hamblin, A. P. 1993. Tectonic, stratigraphic, and sedimentological significance of a regional discontinuity in the Upper Judith River Group (Belly River wedge) of southern Alberta, Saskatchewan, and northern Montana. Canadian Journal of Earth Sciences 30:174200.Google Scholar
Eberth, D. A., and Deino, A. L. 2005. New 40Ar/39Ar ages from three bentonites in the Bearpaw, Horseshoe Canyon, and Scollard formations (Upper Cretaceous-Paleocene) of southern Alberta, Canada. Pp. 2324. in Braman, D. R., Therrien, F., Koppelhus, E. B., and Taylor, W., eds. Dinosaur Park Symposium: Short papers, abstracts, and program. Royal Tyrrell Museum of Paleontology, Drumheller, Alberta.Google Scholar
Eberth, D. A., Rogers, R. R., and Fiorillo, A. R. 2007. A practical approach to the study of bonebeds. Pp. 265332 in Eberth, D. A., Rogers, R. R., and Fiorillo, A. R., eds. Bonebeds. University of Chicago Press, Chicago.Google Scholar
Epstein, S., and Mayeda, T. 1953. Variations in the 18-O content of waters from natural sources. Geochimica et Cosmochimica Acta 4:213224.Google Scholar
Erickson, G. M. 1996. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. Proceedings of the National Academy of Sciences USA 93:1462314627.CrossRefGoogle ScholarPubMed
Evans, D. C., and Reisz, R. R. 2007. Anatomy and relationships of Lambeosaurus magnicristatus, a crested hadrosaurid dinosaur (Ornithischia) from the Dinosaur Park Formation, Alberta. Journal of Vertebrate Paleontology 27:373393.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503–37.Google Scholar
Feranec, R. S., and MacFadden, B. J. 2006. Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32:191205.Google Scholar
Fiorillo, A. R., and Gangloff, R. A. 2001. The caribou migration model for Arctic hadrosaurs (Ornithischia: Dinosauria): a reassessment. Historical Biology 15:323334.Google Scholar
Fiorillo, A. R., and Gangloff, R. A. 2003. Preliminary notes on the taphonomic and ecologic setting of a Pachyrhinosaurus bonebed in northern Alaska. Journal of Vertebrate Palaeontology 23:50A.Google Scholar
Fiorillo, A. R., and Parish, J. T. 2004. The first record of a Cretaceous dinosaur from southwestern Alaska. Cretaceous Research 25:453458.Google Scholar
Foreman, B. Z., Rogers, R. R., Deino, A. L., Wirth, K. R., and Thole, J. T. 2008. Geochemical characterization of bentonite beds in the Two Medicine Formation (Campanian, Montana), including a new 40Ar/39Ar age. Cretaceous Research 29:373385.Google Scholar
Fricke, H. C. 2007. Stable isotope geochemistry of bonebed fossils: reconstructing paleoenvironments, paleoecology, and paleobiology. Pp. 437490 in Rogers, R. R., Eberth, D. A., and Fiorillo, A. R., eds. Bonebeds: genesis, analysis, and paleobiological significance. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Fricke, H. C., and O'Neil, J. R. 1996. Inter- and intra-tooth variations in the oxygen isotope composition of mammalian tooth enamel: some implications for paleoclimatological and paleobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126:9199.Google Scholar
Fricke, H. C., and Pearson, D. A. 2008. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota. Paleobiology 34:534552.Google Scholar
Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D. 1998. Intra-tooth variation in δ18O of mammalian tooth enamel as a record of seasonal changes in continental climate variables. Geochimica et Cosmochimica Acta 62:18391851.CrossRefGoogle Scholar
Fricke, H. C., Rogers, R. R., Backlund, R., Dwyer, C. N., and Echt, S. 2008. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta. Palaeogeography, Palaeoclimatology, Paleoecology 266:1327.CrossRefGoogle Scholar
Gangloff, R. A. 1995. Edmontonia sp., the first record of an ankylosaur from Alaska. Journal of Vertebrate Palaeontology 15:195200.CrossRefGoogle Scholar
Gangloff, R. A., and Fiorillo, A. R. 2003. The record of Arctic dinosaurs from northern Alaska, paleogeographic and paleoecologic implications. Journal of Vertebrate Palaeontology 23:53A.Google Scholar
Gangloff, R. A., Fiorillo, A. R., and Norton, D. W. 2005. The first pachycephalosaurine (Dinosauria) from the Arctic of Alaska and its paleogeographic implications. Journal of Paleontology 79:9971001.Google Scholar
Gannes, L. Z., de Rio, C. M., and Koch, P. 1998. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comprehensive Biochemical Physiology A 119A:725737.Google Scholar
Gat, J. R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 24:225262.Google Scholar
Gates, T. A., and Evans, D. C. 2005. Biogeography of Campanian hadrosaurid dinosaurs from western North America. Pp. 3339 in Braman, D. R., Therrien, F., Koppelhus, E. B., and Taylor, W., eds. Dinosaur Park Symposium short papers, abstracts, and programs. Royal Tyrrell Museum of Paleontology, Drumheller, Alberta.Google Scholar
Hammer, W. R., and Hickerson, W. J. 1993. A new Jurassic dinosaur fauna from Antarctica. Journal of Vertebrate Palaeontology 13:40A.Google Scholar
Hammer, W. R., and Hickerson, W. J. 1994. A crested theropod dinosaur from Antarctica. Science 264:828830.Google Scholar
Hedges, R. E. M. 2003. On bone collagen: apatite-carbonate isotopic relationships. International Journal of Osteoarchaeology 13:6679.CrossRefGoogle Scholar
Hoppe, K. A. 2004. Late Pleistocene mammoth herd structure migration patterns and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Paleobiology 30:129145.2.0.CO;2>CrossRefGoogle Scholar
Hoppe, K. A. 2006. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: implication for paleoclimatic reconstructions. Earth and Planetary Science Letters 244:408417.Google Scholar
Hoppe, K. A., Amundson, R. G., Vavra, M., McClaran, M. P., and Anderson, D. L. 2004. Isotopic analysis of tooth enamel carbonate from modern North American feral horses: implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Paleoecology 203:299311.Google Scholar
Hoppe, K. A., Paytan, A., and Chamberlain, C. P. 2006. Reconstructing grassland vegetation and paleotemperatures using carbon isotope ratios of bison tooth enamel. Geology 34:649652.Google Scholar
Horner, J. R. 1984. Three ecologically distinct vertebrate faunal communities from the Late Cretaceous Two Medicine Formation of Montana, with discussion of evolutionary pressures induced by interior seaway fluctuations. Field Conference Guidebook, pp. 299304. Montana Geological Society, Billings.Google Scholar
Horner, J. R. 1989. The Mesozoic terrestrial ecosystems of Montana. Field Conference Guidebook, pp. 153162. Montana Geological Society, Billings.Google Scholar
Horner, J. R. 1992. Cranial morphology of Prosaurolophus (Ornithischia: Hadrosauridae) with descriptions of two new hadrosaurid species and an evaluation of hadrosaurid phylogenetic relationships. Museum of the Rockies Occasional Paper 2:1119.Google Scholar
Horner, J. R. 1998. An undisturbed clutch of hadrosaur eggs from the Judith River Formation of Montana. Pp. 2225 in Golpim de Carvalho, A., Cachão, M., Andrade, A., da Silva, C., and dos Santos, V., eds. Proceedings of the 1st International Meeting on Dinosaur Paleobiology (May 26–29, 1998). Museu Nacional de Historia Natural, Universidade de Lisboa, Lisbon.Google Scholar
Horner, J. R. 1999. Egg clutches and embryos from two hadrosaurian dinosaurs. Journal of Vertebrate Paleontology 19:607611.Google Scholar
Horner, J. R., and Currie, P. J. 1994. Embryonic and neonatal morphology and ontogeny of a new species of Hypacrosaurus (Ornithischia, Lambeosauridae) from Montana and Alberta. Pp. 312336 in Carpenter, K., Hirsch, K. F., and Horner, J. R., eds. Dinosaur eggs and babies. Cambridge University Press, Cambridge.Google Scholar
Horner, J. R., and Makela, R. 1979. Nest of juveniles provides evidence of family structure among dinosaurs. Nature 282:296298.Google Scholar
Horner, J. R., Schmitt, J. G., Jackson, F., and Hanna, R. 2001. Bones and rocks of the Upper Cretaceous Two Medicine-Judith River Clastic Wedge Complex, Montana. In Hill, C. L., ed. Field trip guidebook, Society of Vertebrate Paleontology 61st Annual Meeting: Mesozoic and Cenozoic Paleontology in the Western Plains and Rocky Mountains. Museum of the Rockies Occasional Paper 3:314. Bozeman, Mont.Google Scholar
Horner, J. R., Weishampel, D. B., and Forster, C. A. 2004. Hadrosauridae. Pp. 438463 in Weishampel, D. B., Dodson, P. and Osmolska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Hotton, N. III. 1980. An alternative to dinosaur endothermy: the happy wanderers. Pp. 311350 in Thomas, R. D. K. and Olson, E. C., eds. A cold-blooded look at warm-blooded dinosaurs. Westview Press, Boulder, Colo.Google Scholar
Jim, S., Ambrose, S., and Evershed, R. 2004. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochimica et Cosmochimica Acta 68:6172.CrossRefGoogle Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.Google Scholar
Koch, P. L., Fogel, M., and Tuross, N. 1994. Tracing the diet of fossil animals using stable isotopes. Pp. 6394 in Klajtha, K. and Michener, R. H., eds. Stable isotopes in ecology and environmental science. Blackwell Scientific, Oxford.Google Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997. The effects of sample treatment and diagnosis on the isotopic integrity of carbonate in biogenic hydroxyapatite. Journal of Archaeological Sciences 24:417429.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.Google Scholar
Kohn, M. J. 2006. REE and U zoning in fossil teeth. Geological Society of America Abstracts with Programs 38:46.Google Scholar
Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1998. Variability in herbivore tooth oxygen isotope compositions: reflections of seasonality or developmental physiology? Chemical Geology 152:92112.CrossRefGoogle Scholar
Kohn, M. J., and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry 48:455488.CrossRefGoogle Scholar
Lehman, T. M. 1987. Late Maastrichtian paleoenvironments and dinosaur biogeography in the western interior of North America. Palaeogeography, Palaeoclimatology, Paleoecology 60:189217.Google Scholar
Lehman, T. M. 1997. Late Campanian dinosaur biogeography in the western interior of North America. Pp. 223240 in Wolberg, D. L., Stump, E., and Rosenberg, G. D., eds. Proceedings of the DinoFest International symposium, Arizona State University. Academy of Natural Sciences, Philadelphia.Google Scholar
Lehman, T. M. 2001. Late Cretaceous dinosaur provinciality. Pp. 310328 in Tanke, D. and Carpenter, K., eds. Mesozoic vertebrate life. Indiana University Press, Bloomington.Google Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48:385390.Google Scholar
Lucas, S. G., Hunt, A. P., and Sullivan, R. M. 2006. Stratigraphy and age of the Upper Cretaceous Fruitland Formation, west-central San Juan Basin, New Mexico. In Lucas, S. G. and Sullivan, R. M., eds. Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35:16.Google Scholar
Luz, B., and Kolodny, Y. 1985. Oxygen isotope variations in phosphates of biogenic apatites. IV. Mammal teeth and bones. Earth Planetary Science Letters 75:2936.Google Scholar
MacFadden, B. J., and Higgins, P. 2004. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama. Oecologia 140:169182.Google Scholar
Matthew, W. D. 1915. Climate and evolution. Annals of the New York Academy of Science 24:171318.Google Scholar
Molnar, R. E., and Wiffen, J. 1994. A Late Cretaceous polar dinosaur fauna from New Zealand. Cretaceous Research 15:689706.Google Scholar
Nelms, L. G. 1989. Late Cretaceous dinosaurs from the North Slope of Alaska. Journal of Vertebrate Palaeontology 9(Suppl. to No. 3):34A.Google Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38:328336.Google Scholar
O'Leary, M. H., Mahavan, S., and Paneth, P. 1992. Physical and chemical basis of carbon isotope fractionation in plants. Plant, Cell and Environment 15:10991104.CrossRefGoogle Scholar
Ogg, J. G., Agterberg, F. P., and Gradstein, F. M. 2004. The Cretaceous Period. Cambridge University Press, Cambridge.Google Scholar
Parrish, J. M., Parrish, J. T., Hutchison, J. H., and Spicer, R. A. 1987. Late Cretaceous vertebrate fossils from the North Slope of Alaska and implications for dinosaur ecology. Palaios 2:377389.Google Scholar
Passey, B. H., Robinson, T. F., Ayliffe, L. K., and Cerling, T. E., Sponheimer, M., Dearing, M. D., Roeder, B. L., and Ehleringer, J. R. 2005. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Sciences 32:14591470.Google Scholar
Rich, P. V., Rich, T. H., Wagstaff, B. E., McEwan Mason, J., Douthitt, C. B., Gregory, R. T., and Felton, E. A. 1988. Evidence for low temperatures and biologic diversity in Cretaceous high-latitudes of Australia. Science 242:14031406.Google Scholar
Roberts, E. M., Deino, A. L., and Chan, M. A. 2005. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretaceous Research 26:307318.Google Scholar
Rogers, R. R. 1990. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of Montana: evidence for drought-related mortality. Palaios 5:394413.Google Scholar
Rogers, R. R. 1994. Nature and origin of through-going discontinuities in nonmarine foreland basin strata, Upper Cretaceous, Montana: implications for sequence analysis. Geology 22:11191122.Google Scholar
Rogers, R. R. 1998. Sequence analysis of the Upper Cretaceous Two Medicine and Judith River formations, Montana: nonmarine response to the Claggett and Bearpaw marine cycles. Journal of Sedimentary Research 68:615631.Google Scholar
Rogers, R. R., and Kidwell, S. M. 2007. A conceptual framework for the genesis and analysis of vertebrate skeletal concentrations. Pp. 164 in Rogers, R. R., Eberth, D. A., and Fiorillo, A. R., eds. Bonebeds. University of Chicago Press, Chicago.Google Scholar
Rogers, R. R., Swisher, C. C., and Horner, J. R. 1993. 40Ar/39Ar age and correlation of the non-marine Two Medicine Formation (Upper Cretaceous), northwestern Montana: Canadian Journal of Earth Sciences 30:10661075.Google Scholar
Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R. 1993. Isotopic patterns in modern global precipitation. Pp. 136 in Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S., eds. Climate change in the continental isotopic records. American Geophysical Union, Washington, D.C. Google Scholar
Ryan, M., and Evans, D. C. 2005. Ornithischian dinosaurs. Pp. 312348 in Currie, P. J. and Koppelhus, E. B., eds. Dinosaur Provincial Park: a spectacular ancient ecosystem revealed. Indiana University Press, Bloomington.Google Scholar
Sharp, Z. D., and Cerling, T. E. 1998. Fossil isotope records of seasonal climate and ecology: straight from the horse's mouth. Geology 26:219222.Google Scholar
Slaughter, R. W., Hickerson, W. J., and Hammer, W. R. 1994. Analysis of Antarctic theropod teeth based on serration densities and patterns. Geological Society of America Abstracts with Programs 26:61.Google Scholar
Stanton-Thomas, K., and Carlson, S. J. 2004. Microscale δ18O and δ13C isotopic analysis of an ontogenetic series of the hadrosaurid dinosaur Edmontosaurus: implications for physiology and ecology. Palaeogeography, Palaeoclimatology, Palaeoecology 206:257287.Google Scholar
Straight, W. H., Barrick, R. E., and Eberth, D. A. 2004. Reflections of surface water, seasonality and climate in stable oxygen isotopes from tyrannosaurid tooth enamel. Palaeogeography, Palaeoclimatology, Paleoecology 206:239256.Google Scholar
Sullivan, R. M., and Lucas, S. G. 2006. The Kirtlandian land-vertebrate “age”-faunal comparison, temporal position and biostratigraphic correlation in the nonmarine Upper Cretaceous of western North America. In Lucas, S. G. and Sullivan, R. M., eds. Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35:730.Google Scholar
Sullivan, R. M., and Williamson, T. E. 1999. A new skull of Parasaurolophus (Dinosauria: Hadrosauridae) from the Fruitland Formation of New Mexico and a revision of the genus. New Mexico Museum of Natural History and Science Bulletin 15:152.Google Scholar
Trueman, C. N., and Tuross, N. 2002. Trace elements in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry 48:489521.Google Scholar
Trueman, C. N., Behrensmeyer, A. K., Tuross, N., and Weiner, S. 2004. Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science 31:721739.Google Scholar
Weishampel, D. B., Barrett, P. M., Coria, R. A., Le Loeuff, J., Xing, X., Xijin, Z., Sahni, A., Gomani, E. M. P., and Noto, C. R. 2004. Dinosaur distribution. Pp. 517606 in Weishampel, D. B., Dodson, P., and Osmolska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Williamson, T. E. 2000. Review of Hadrosauridae (Dinosauria, Ornithischia) from the San Juan Basin, New Mexico. Pp 191213 in Lucas, S. G. and Heckert, A. B., eds. Dinosaurs of New Mexico. New Mexico Museum of Natural History and Science, Albuquerque.Google Scholar