Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T16:06:56.077Z Has data issue: false hasContentIssue false

The greatest hits of all time: the histories of dominant genera in the fossil record

Published online by Cambridge University Press:  02 July 2018

Roy E. Plotnick
Affiliation:
Earth and Environmental Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607. E-mail: [email protected]
Peter Wagner
Affiliation:
Earth and Atmospheric Sciences & School of Biological Sciences, University of Nebraska–Lincoln BESY 214, Lincoln, Nebraska 68588-0340. E-mail: [email protected]

Abstract

Certain taxa are noticeably common within collections, widely distributed, and frequently long-lived. We have examined these dominant genera as compared with rarer genera, with a focus on their temporal histories. Using occurrence data from the Paleobiology Database, we determined which genera belonging to six target groups ranked among the most common within each of 49 temporal bins based on occurrences. The turnover among these dominant taxa from bin to bin was then determined for each of these groups, and all six groups when pooled. Although dominant genera are only a small fraction of all genera, the patterns of turnover mimic those seen in much larger compilations of total biodiversity. We also found that differences in patterns of turnover at the top ranks among the higher taxa reflect previously documented comparison of overall turnover among these classes. Both dominant and nondominant genera exhibit, on average, symmetrical patterns of rise and fall between first and last appearances. Dominant genera rarely begin at high ranks, but nevertheless tend to be more common when they first appear than nondominant genera. Moreover, dominant genera rarely are in the top 20 when they last appear, but still typically occupy more localities than nondominant genera occupy in their last interval. The mechanism(s) that produce dominant genera remain unclear. Nearly half of dominant genera are the type genus of a family or subfamily. This is consistent with a simple model of morphological and phylogenetic diversification and sampling.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M. 1992. Palökologie und zeitliche Verbreitung benthischer Faunengemeinschaften im Unterjura von Chile. Beringeria 5:1174.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack–Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., John Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A.. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversity. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Bailey, L. L., MacKenzie, D. I., and Nichols, J. D.. 2014. Advances and applications of occupancy models. Methods in Ecology and Evolution 5:12691279.Google Scholar
Bell, G. 2001. Neutral macroecology. Science 293:24132418.Google Scholar
Besairie, H., and Collignon, M.. 1972. Geologie de Madagascar I. Les Terrains Sedimentaires. Annales Geologiques de Madagascar 35:1463.Google Scholar
Bradlow, E. T., and Fader, P. S.. 2001. A Bayesian lifetime model for the “Hot 100” Billboard songs. Journal of the American Statistical Association 96:368381.Google Scholar
Brown, J. H. 1984. On the relationship between abundance and distribution of species. American Naturalist 124:255279.Google Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F.. 1982. On the distribution of species occurrence. Paleobiology 8:143150.Google Scholar
Carotenuto, F., Barbera, C., and Raia, P.. 2010. Occupancy, range size, and phylogeny in Eurasian Pliocene to Recent large mammals. Paleobiology 36:399414.Google Scholar
Christie, M., Holland, S. M., and Bush, A. M.. 2013. Contrasting the ecological and taxonomic consequences of extinction. Paleobiology 39:538559.Google Scholar
Connolly, S. R., and Miller, A. I.. 2001. Global Ordovician faunal transitions in the marine benthos: proximate causes. Paleobiology 27:779795.Google Scholar
Cooper, G. A., and Grant, R. E.. 1977. Permian brachiopods of west Texas, VI. Smithsonian Contributions to Paleobiology. 32:31613370.Google Scholar
Darroch, S. A. F., and Wagner, P. J.. 2015. Response of beta diversity to pulses of Ordovician–Silurian mass extinction. Ecology 96:532549.Google Scholar
Droser, M. L., Bottjer, D. J., and Sheehan, P. M.. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology 25:167170.Google Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R.. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.Google Scholar
Estabrook, G. F. 1977. Does common equal primitive? Systematic Botany 2:1642.Google Scholar
Etienne, R. S. 2007. A neutral sampling formula for multiple samples and an “exact” test of neutrality. Ecology Letters 10:608618.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences USA 89:73257329.Google Scholar
Foote, M. 2007. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517529.Google Scholar
Foote, M. 2016. On the measurement of occupancy in ecology and paleontology. Paleobiology 42:707729.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.Google Scholar
Foote, M., Ritterbush, K. A., and Miller, A. I. 2016. Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance. Paleobiology 42:269288.Google Scholar
Gardner, J. R. 1947). The molluscan fauna of the Alum Bluff Group of Florida. U.S. Geological Survey Professional Paper 1-709.Google Scholar
Gaston, K. J. 2010. Valuing common species. Science 327:154155.Google Scholar
Gitton, J. L., Lozouet, P., and Maestrati, Ph. 1986. Biostratigraphie et paleoecologie des gisements types du Stampian de la region d’Etampes (Essonne). Geologie de la France 1:1101.Google Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.Google Scholar
Hannisdal, B., Haaga, K. A., Reitan, T., Diego, D., and Liow, L. H. 2017. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record. Proceedings of the Royal Society of London B 284:20170722.Google Scholar
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O’Dea, A., Pandolfi, J. M., Simpson, C., and Tittensor, D. P. 2012. Extinctions in ancient and modern seas. Trends in Ecology and Evolution 27:608617.Google Scholar
Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J., and Allmon, W. D. 2014. The generification of the fossil record. Paleobiology 40:511528.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios 22:408423.Google Scholar
Hubbell, S. P. 1997. A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16(Suppl), S9S21.Google Scholar
Hughes, M., Gerber, S., and Wills, M. A. 2013. Clades reach highest morphological disparity early in their evolution. Proceedings of the National Academy of Sciences USA 110:1387513879.Google Scholar
Hull, P. M., Darroch, S. A. F., and Erwin, D. H. 2015. Rarity in mass extinctions and the future of ecosystems. Nature 528:345351.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Pp. 192210. in E. S. Vrba, and N. Eldredge, eds. Paleobiology Memoir No. 31.Google Scholar
Jablonski, D., and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
King, R. E. 1931. The geology of the Glass Mountains, Texas. Part 2, Faunal summary and correlation of the Permian formations with description of Brachiopoda. University of Texas Bulletin 3042:1245.Google Scholar
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.Google Scholar
Liow, L. H. 2013. Simultaneous estimation of occupancy and detection probabilities: an illustration using Cincinnatian brachiopods. Paleobiology 39:193213.Google Scholar
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., and Langtimm, C. A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:22482255.Google Scholar
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., and Franklin, A. B. 2003. Estimating site occupancy, colonization and local extinction when a species is detected imperfectly. Ecology 84:22002207.Google Scholar
Manivit, J., Le Nindre, Y. M., and Vaslet, D. 1990. Le Jurassique D’Arabie Centrale. Document du BRGM 4:25519.Google Scholar
MacKenzie, D. I., Bailey, L. L., and Nichols, J. D. 2004. Investigating species co-occurrence patterns when species are detected imperfectly. Journal of Animal Ecology 73:546555.Google Scholar
McGhee, G. R. Jr., Clapham, M. E., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370:260270.Google Scholar
McGill, B. J. 2006. A renaissance in the study of abundance. Science 314:770772.Google Scholar
Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Team, T. G. B., Pickett, J. P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A., and Aiden, E. L. 2011. Quantitative analysis of culture using millions of digitized books. Science 331:176182.Google Scholar
Patzkowsky, M. E. 1995. A hierarchical branching model of evolutionary radiations. Paleobiology 21:440460.Google Scholar
Plotnick, R. E. 2017. Recurrent hierarchical patterns and the fractal distribution of fossil localities. Geology 45:295298.Google Scholar
Plotnick, R. E., and Wagner, P. J. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.Google Scholar
Plotnick, R. E., Smith, F. A., and Lyons, S. K. 2016. The fossil record of the sixth extinction. Ecology Letters 19:546553.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Reddin, C. J., Bothwell, J. H., and Lennon, J. J. 2015. Between-taxon matching of common and rare species richness patterns. Global Ecology and Biogeography 24:14761486.Google Scholar
Reed, F. R. C. 1944. Brachiopoda and Mollusca from the Productus limestones of the Salt Range. Palaeontogica Indica, Memoirs of the Geological Survey of India, New Series 23:1596.Google Scholar
Sepkoski, J. J. Jr. 1997. Biodiversity: past, present and future. Journal of Paleontology 71:533539.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1563.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sohl, N. F., and Koch, C. F. 1983). Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira Assemblage Zone in the East Gulf Coastal Plain. U.S. Geological Survey Open File Report 83-451.Google Scholar
Sohl, N. F., and Koch, C. F.. 1984). Upper Cretaceous (Maestrichtian) larger invertebrate fossils from the Haustator bilira Assemblage Zone in the west gulf Coastal Plain. U.S. Geological Survey Open File Report 84-687.Google Scholar
Sohl, N. F., and Koch, C. F.. 1987). Upper Cretaceous (Maestrichtian) larger invertebrates from the Haustator bilira Assemblage Zone in the Atlantic Coastal Plain with further data for the East Gulf. U.S. Geological Survey Open File Report 87-194.Google Scholar
Solow, A. R. 1993. Inferring extinction from sighting data. Ecology 74:962963.Google Scholar
Solow, A. R. 2005. Inferring extinction from a sighting record. Mathematical Biosciences 195:4755.Google Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127. in R. M. Ross, and W. D. Allmon, eds. Causes of evolution—a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Steenweg, R., Hebblewhite, M., Whittington, J., Lukacs, P., and McKelvey, K. 2018. Sampling scales define occupancy and underlying occupancy–abundance relationships in animals. Ecology 99:172183.Google Scholar
Stygall-Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.Google Scholar
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., Phillips, O. L., et al 2013. Hyperdominance in the Amazonian tree flora. Science 342:1243092.Google Scholar
Toulmin, L. D. 1977. Stratigraphic distribution of Paleocene and Eocene Fossils in the Eastern Gulf Coast Region. Geological Survey of Alabama, Monograph 13:1602.Google Scholar
Tozer, E. T. 1994. Canadian Triassic ammonoid faunas. Geological Survey of Canada Bulletin 467:1663.Google Scholar
Uhen, M. D. 1996. An evaluation of clade–shape statistics using simulations and extinct families of mammals. Paleobiology 22:822.Google Scholar
Valentine, J. W. 1990. The macroevolution of clade shape. Pp. 128150. in R. M. Ross, and W. D. Allmon, eds. Causes of evolution—a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Wagner, P. J. 2000. Likelihood tests of hypothesized durations: determining and accommodating biasing factors. Paleobiology 26:431449.Google Scholar
Wagner, P. J., and Estabrook, G. F. 2014. Trait-based diversification shifts reflect differential extinction among fossil taxa. Proceedings of the National Academy of Sciences USA 111:1641916424.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Wagner, P. J., Aberhan, M., Hendy, A., and Kiessling, W. 2007. The effects of taxonomic standardization on sampling—standardized estimates of historical diversityz. Proceedings of the Royal Society of London B 274:439444.Google Scholar
Wagner, P. J., Plotnick, R. E., and Lyons, S. K. 2018). Evidence for trait-based dominance in occupancy among fossil taxa and the decoupling of macroecological and macroevolutionary success. American Naturalist. doi: 10.1086/697642.Google Scholar
West, G. B. 2017. Scale: the universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. Penguin, New York.Google Scholar
Woodring, W. P. 1982). Geology and paleontology of Canal Zone and adjoining parts of Panama: description of Tertiary mollusks (Pelecypods: Propeamussiidae to Cuspidariidae). U.S. Geological Survey Professional Paper 306.Google Scholar
Zaffos, A., Finnegan, S., and Peters, S. E. 2017. Plate tectonic regulation of global marine animal diversity. Proceedings of the National Academy of Sciences USA 114:56535658.Google Scholar
Supplementary material: PDF

Plotnick and Wagner supplementary material

References

Download Plotnick and Wagner supplementary material(PDF)
PDF 3 MB
Supplementary material: PDF

Plotnick and Wagner supplementary material

Tables 1-2 and Figures 1-3

Download Plotnick and Wagner supplementary material(PDF)
PDF 419.3 KB