Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T18:04:06.908Z Has data issue: false hasContentIssue false

Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species

Published online by Cambridge University Press:  08 April 2016

Lee Hsiang Liow
Affiliation:
Center for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Blindern Post Office Box 1066, Oslo N-0316, Norway. E-mail: [email protected]
Hans Julius Skaug
Affiliation:
Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen N-5008, Norway
Torbjørn Ergon
Affiliation:
Program for Integrative Biology, Department of Biology, University of Oslo, Blindern Post Office Box 1066, Oslo N-0316, Norway
Tore Schweder
Affiliation:
Department of Economics, University of Oslo, Post Office Box 1095 Blindern, Oslo N-0317, Norway

Abstract

Species arise and establish themselves over the geologic time scale. This process is manifested as a change in the relative frequency of occurrences of a given species in the global pool of species. Our main goal here is to model this rise and the eventual decline of microfossil species using a mixed-effects model where groups each have a characteristic occurrence trajectory (main effects) and each species belonging to those groups is allowed to deviate from the given group trajectory (random effects). Our model can be described as a “hat” with logistic forms in the periods of increase and decline. Using the estimated timings of rises and falls, we find that the lengths of the periods of rise are about as long as the lengths of the periods when species are above 50% of their estimated maximal occurrences. These latter periods are here termed periods of dominance, which are in turn about the same length as the species' periods of fall. The peak rates of the rises of microfossils are in general faster than their peak rates of falls. These quantified observations may have broad macroevolutionary and macroecological implications. Further, we hypothesize that species that have experienced and survived high levels of environmental volatility (specifically, periods of greater than average variation in temperature and productivity) during their formative periods should have longer periods of dominance. This is because subsequent environmental variations should not drive them to decline with ease. We find that higher estimated environmental volatility early in the life of a species positively correlates with lengths of periods of dominance, given that a species survives the initial stress of the environmental fluctuations. However, we find no evidence that the steepness of the rise of a species is affected by environmental volatility in the early phases of its life.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nurnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Angielczyk, K. D., and Fox, D. L. 2006. Exploring new uses for measures of fit of phylogenetic hypotheses to the fossil record. Paleobiology 32:147165.Google Scholar
Bonn, A., Storch, D., and Gaston, K. J. 2004. Structure of the species-energy relationship. Proceedings of the Royal Society of London B 271:16851691.Google Scholar
Bown, T. M., Holroyd, P. A., and Rose, K. D. 1994. Mammal extinctions, body-size, and paleotemperature. Proceedings of the National Academy of Sciences USA 91:1040310406.Google Scholar
Brockwell, P. J., and Davis, R. A. 1987. Time series: theory and methods. Springer, New York.CrossRefGoogle Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.2.0.CO;2>CrossRefGoogle Scholar
Clark, J. S., and Bj⊘rnstad, O. N. 2004. Population time series: Process variability, observation errors, missing values, lags, and hidden states. Ecology 85:31403150.Google Scholar
Connolly, S. R., and Miller, A. I. 2001. Joint estimation of sampling and turnover rates from fossil databases: capture-Mark-Recapture methods revisited. Paleobiology 27:751767.Google Scholar
Coyne, J. A., and Orr, H. A. 2004. Speciation. Sinauer Associates, Sunderland, Massachusetts, U.S.A. Google Scholar
Currano, E. D., Wilf, P., Wing, S. L., Labandeira, C. C., Lovelock, E. C., and Royer, D. L. 2008. Sharply increased insect herbivory during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences 105:19601964.Google Scholar
De Blasio, F. V., and De Blasio, B. F. 2009. Extinctions in a spatial model of fossil communities subject to correlated environmental disturbance. Ecological Complexity 6:7075.Google Scholar
Fairbanks, R. G., Wiere, P. H., and Be, A. W. H. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207:6163.Google Scholar
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and , A. W. H. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298:841844.CrossRefGoogle Scholar
Foissner, W. 2006. Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45:111136.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Foote, M. 2007. Symmetric waxing and waning of marine animal genera. Paleobiology 333:517529.CrossRefGoogle Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I. 2007. Rise and fall of species occupancy in Cenozoic fossil molluscs. Science 318:11311134.CrossRefGoogle Scholar
Gibbs, S. J., Bown, P. R., Sessa, J. A., Bralower, T. J., and Wilson, P. A. 2006. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Science 314:17701773.Google Scholar
Gillooly, J. F., Allen, A. P., West, G. B., and Brown, J. H. 2005. The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences USA 102:140145.Google Scholar
Gross, K., and Cardinale, B. J. 2007. Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. American Naturalist 170:207220.Google Scholar
Harvey, A. C., Ruiz, E., and Shephard, N. 1994. Multivariate stochastic variance models. Review of Economic Studies 61:247264.CrossRefGoogle Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26:148168.Google Scholar
Hortal, J., Lobo, J. M., and Jimenez-Valverde, A. 2007. Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conservation Biology 21:853863.Google Scholar
Hunt, G., and Roy, K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.Google Scholar
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24:467500.Google Scholar
Jernvall, J., and Fortelius, M. 2004. Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. American Naturalist 164:614624.Google Scholar
Kalbfleisch, J. D., and Prentice, R. L. 1980. The statistical analysis of failure time data. Wiley, New York.Google Scholar
Kamikuri, S. I., Nishi, H., Moore, T. C., Nigrini, C. A., and Motoyama, I. 2005. Radiolarian faunal turnover across the Oligocene/Miocene boundary in the equatorial Pacific Ocean. Marine Micropaleontology 57:7496.CrossRefGoogle Scholar
Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K., Shackleton, N. J., and Thomas, E. 2003. Early Cenozoic benthic foraminiferal isotopes: species reliability and interspecies correction factors. Paleoceanography 18.Google Scholar
Kidwell, S. M., and Holland, S. M. 2002. The quality of the fossil record: implications for evolutionary analyses. Annual Review of Ecology and Systematics 33:561588.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic time. Paleobiology 33:414434.Google Scholar
Kürschner, W. M., Kvaek, Z., and Dilcher, D. L. 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences USA 105:449453.CrossRefGoogle ScholarPubMed
Lazarus, D. 1994. Neptune: a marine micropaleontology database. Mathematical Geology 26:817831.CrossRefGoogle Scholar
Lazarus, D., Cervato, C., and Diver, P. 2007. Neptune. database (http://services.chronos.org/databases/neptune/index.html).Google Scholar
Leckie, M., Cervato, C., Huber, B. T., Clark, K., Diver, P., and Hooks, K. 2004. Using the Neptune database to explore Mesozoic-Cenozoic chronostratigraphy and deep-sea microfossil record. Abstracts with Programs 36(5):152.Google Scholar
Liow, L. H. 2007a. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.Google Scholar
Liow, L. H. 2007b. Lineages with long durations are old and morphologically average: an analysis using multiple datasets. Evolution 61:885901.Google Scholar
Liow, L. H., and Stenseth, N. C. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.Google Scholar
Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., and Stenseth, N. C. 2008. Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences USA 105:60976102.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, N.J. Google Scholar
MacKenzie, D., Nichols, J., Royle, A., Pollock, K., Bailey, L., and Hines, J. 2006. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, Amsterdam.Google Scholar
Marshall, C. R. 1990. Confidence-intervals on stratigraphic ranges. Paleobiology 16:110.Google Scholar
Marshall, C. R. 1994. Confidence-intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology 20:459469.Google Scholar
Marshall, C. R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165173.Google Scholar
Nichols, J. D., and Pollock, K. H. 1983. Estimating taxonomic diversity, extinction rates, and speciation rates from fossil data using capture-recapture models. Paleobiology 9:150163.CrossRefGoogle Scholar
Nichols, J. D., Morris, R. W., Brownie, C., and Pollock, K. H. 1986. Sources of variation in extinction rates, turnover, and diversity of marine invertebrate families during the Paleozoic. Paleobiology 12:421432.Google Scholar
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.CrossRefGoogle Scholar
Pol, D., and Norell, M. A. 2006. Uncertainty in the age of fossils and the stratigraphic fit to phylogenies. Systematic Biology 55:512521.Google Scholar
Raffi, I., Backman, J., Fornaciari, E., Pälike, H., Rio, D., Lourens, L., and Hilgen, F. 2006. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quaternary Science Reviews 25:31133137.Google Scholar
Raia, P., Meloro, C., Loy, A., and Barbera, C. 2006. Species occupancy and its course in the past: Macroecological patterns in extinct communities. Evolutionary Ecology Research 8:181194.Google Scholar
Royle, J. A., Kery, M., Gautier, R., and Schmid, H. 2007. Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecological Monographs 77:465481.Google Scholar
Schmidt, D. N., Renaud, S., and Bollmann, J. 2003. Response of planktic foraminiferal size to late Quaternary climate change. Paleoceanography 18(2). http://www.agu.org/pubs/crossref/2003/2002PA000831.shtml Google Scholar
Sepkoski, J. J. 1993. 10 years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.Google Scholar
Skaug, H. J., and Fournier, D. A. 2006. Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Computational Statistics and Data Analysis 51:699709.CrossRefGoogle Scholar
Smith, A. B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, London 164:731745.CrossRefGoogle Scholar
Solow, A. R. 2003. Estimation of stratigraphic ranges when fossil finds are not randomly distributed. Paleobiology 29:181185.Google Scholar
Spencer-Cervato, C. 1999. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontologia Electronica 2(2).Google Scholar
Sundquist, E. T., and Visser, K. 2005. The geologic history of the carbon cycle. Pp. 425472 in Schlesinger, W. H., ed. Biogeochemistry. Elsevier, Amsterdam.Google Scholar
Thunell, R. C. 1981. Cenozoic paleotemperature changes and planktonic foraminiferal speciation. Nature 289:670672.Google Scholar
Viranta, S. 2003. Geographic and temporal ranges of Middle and Late Miocene carnivores. Journal of Mammalogy 84:12671278.Google Scholar
Wagner, P. J. 2000. Likelihood tests of hypothesized durations: determining and accommodating biasing factors. Paleobiology 26:431449.Google Scholar
Weiss, R. E., and Marshall, C. R. 1999. The uncertainty in the true end point of a fossil's stratigraphic range when stratigraphic sections are sampled discretely. Mathematical Geology 31:435453.CrossRefGoogle Scholar
Wills, M. A. 2007. Fossil ghost ranges are most common in some of the oldest and some of the youngest strata. Proceedings of the Royal Society of London B 274:24212427.Google ScholarPubMed
Wright, S., Keeling, J., and Gillman, L. 2006. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proceedings of the National Academy of Sciences USA 103:77187722.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Supplementary material: PDF

Liow et al. supplementary material

Supplementary Material

Download Liow et al. supplementary material(PDF)
PDF 2.7 MB